April  2013, 6(4): 925-974. doi: 10.3934/dcdss.2013.6.925

Dynamics of the the dihedral four-body problem

1. 

Deptartment of Mathematics and Applications, University of Milano-Bicocca

2. 

Via R. Cozzi, 53, 20125 Milano

3. 

Dipartimento di Matematica e Fisica Ennio De Giorgi

4. 

Universit del Salento

5. 

73100 Lecce

Received  October 2011 Revised  April 2012 Published  December 2012

Consider four point particles with equal masses in the euclideanspace,subject to the following symmetry constraint: at each instant theyare symmetric with respect to the dihedral group $D_2$,that is the groupgenerated by two rotations of angle $\pi$ around twoorthogonal axes.Under ahomogeneous potential of degree $-\alpha$ for $0<\alpha<2$,this is a subproblem of the four-body problem,inwhich all orbits have zero angular momentum and the configurationspace is three-dimensional.In this paper westudy the flow in McGehee coordinates on the collision manifold,anddiscuss the qualitative behavior of orbits which reach or come close to a total collision.
Citation: Davide L. Ferrario, Alessandro Portaluri. Dynamics of the the dihedral four-body problem. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 925-974. doi: 10.3934/dcdss.2013.6.925
References:
[1]

A. Ambrosetti and V. Coti Zelati, Non-collision periodic solutions for a class of symmetric $3$-body type problems,, Topol. Methods Nonlinear Anal., 3 (1994), 197.   Google Scholar

[2]

K.-C. Chen, Binary decompositions for planar $N$-body problems and symmetric periodic solutions,, Arch. Ration. Mech. Anal., 170 (2003), 247.  doi: 10.1007/s00205-003-0277-2.  Google Scholar

[3]

K.-C. Chen, Variational methods on periodic and quasi-periodic solutions for the $N$-body problem,, Ergodic Theory Dynam. Systems, 23 (2003), 1691.  doi: 10.1017/S0143385703000245.  Google Scholar

[4]

A. Chenciner, Action minimizing solutions of the Newtonian $n$-body problem: from homology to symmetry,, in, III (2002), 279.   Google Scholar

[5]

A. Chenciner, Are there perverse choreographies?,, New Advances in Celestial Mechanics and Hamiltonian Systems, (2004), 63.   Google Scholar

[6]

A. Chenciner and R. Montgomery, A remarkable periodic solution of the three-body problem in the case of equal masses,, Ann. of Math. (2), 152 (2000), 881.  doi: 10.2307/2661357.  Google Scholar

[7]

J. Delgado and C. Vidal, The tetrahedral {$4$-body problem},, J. Dynam. Differential Equations, 11 (1999), 735.  doi: 10.1023/A:1022667613764.  Google Scholar

[8]

R. L. Devaney, Triple collision in the planar isosceles three-body problem,, Invent. Math., 60 (1980), 249.  doi: 10.1007/BF01390017.  Google Scholar

[9]

R. L. Devaney, Singularities in classical mechanical systems,, in, 10 (1981), 1979.   Google Scholar

[10]

D. L. Ferrario, Symmetry groups and non-planar collisionless action-minimizing solutions of the three-body problem in three-dimensional space,, Arch. Rational Mech. Anal., 179 (2006), 389.  doi: 10.1007/s00205-005-0396-z.  Google Scholar

[11]

D. L. Ferrario, Transitive decomposition of symmetry groups for the $n$-body problem,, Adv. in Math., 2 (2007), 763.  doi: 10.1016/j.aim.2007.01.009.  Google Scholar

[12]

D. L. Ferrario and A. Portaluri, On th dihedral $n$-body problem,, Nonlinearity, 21 (2008), 1.  doi: 10.1088/0951-7715/21/6/009.  Google Scholar

[13]

D. L. Ferrario and S. Terracini, On the existence of collisionless equivariant minimizers for the classical n-body problem,, Invent. Math., 155 (2004), 305.  doi: 10.1007/s00222-003-0322-7.  Google Scholar

[14]

R. McGehee, Triple collision in the collinear three-body problem,, Invent. Math., 27 (1974), 191.   Google Scholar

[15]

R. Moeckel, Orbits of the three-body problem which pass infinitely close to triple collision,, Amer. J. Math., 103 (1981), 1323.  doi: 10.2307/2374233.  Google Scholar

[16]

R. Moeckel, Orbits near triple collision in the three-body problem,, Indiana Univ. Math. J., 32 (1983), 221.  doi: 10.1512/iumj.1983.32.32020.  Google Scholar

[17]

M. Salomone and Z. Xia, Non-planar minimizers and rotational symmetry in the $N$-body problem,, J. Differential Equations, 215 (2005), 1.  doi: 10.1016/j.jde.2004.11.004.  Google Scholar

[18]

C. Simó and E. Lacomba, Analysis of some degenerate quadruple collisions,, Celestial Mech., 28 (1982), 49.  doi: 10.1007/BF01230659.  Google Scholar

[19]

C. Vidal, The tetrahedral $4$-body problem with rotation,, Celestial Mech. Dynam. Astronom., 71 (), 15.  doi: 10.1023/A:1008397202674.  Google Scholar

show all references

References:
[1]

A. Ambrosetti and V. Coti Zelati, Non-collision periodic solutions for a class of symmetric $3$-body type problems,, Topol. Methods Nonlinear Anal., 3 (1994), 197.   Google Scholar

[2]

K.-C. Chen, Binary decompositions for planar $N$-body problems and symmetric periodic solutions,, Arch. Ration. Mech. Anal., 170 (2003), 247.  doi: 10.1007/s00205-003-0277-2.  Google Scholar

[3]

K.-C. Chen, Variational methods on periodic and quasi-periodic solutions for the $N$-body problem,, Ergodic Theory Dynam. Systems, 23 (2003), 1691.  doi: 10.1017/S0143385703000245.  Google Scholar

[4]

A. Chenciner, Action minimizing solutions of the Newtonian $n$-body problem: from homology to symmetry,, in, III (2002), 279.   Google Scholar

[5]

A. Chenciner, Are there perverse choreographies?,, New Advances in Celestial Mechanics and Hamiltonian Systems, (2004), 63.   Google Scholar

[6]

A. Chenciner and R. Montgomery, A remarkable periodic solution of the three-body problem in the case of equal masses,, Ann. of Math. (2), 152 (2000), 881.  doi: 10.2307/2661357.  Google Scholar

[7]

J. Delgado and C. Vidal, The tetrahedral {$4$-body problem},, J. Dynam. Differential Equations, 11 (1999), 735.  doi: 10.1023/A:1022667613764.  Google Scholar

[8]

R. L. Devaney, Triple collision in the planar isosceles three-body problem,, Invent. Math., 60 (1980), 249.  doi: 10.1007/BF01390017.  Google Scholar

[9]

R. L. Devaney, Singularities in classical mechanical systems,, in, 10 (1981), 1979.   Google Scholar

[10]

D. L. Ferrario, Symmetry groups and non-planar collisionless action-minimizing solutions of the three-body problem in three-dimensional space,, Arch. Rational Mech. Anal., 179 (2006), 389.  doi: 10.1007/s00205-005-0396-z.  Google Scholar

[11]

D. L. Ferrario, Transitive decomposition of symmetry groups for the $n$-body problem,, Adv. in Math., 2 (2007), 763.  doi: 10.1016/j.aim.2007.01.009.  Google Scholar

[12]

D. L. Ferrario and A. Portaluri, On th dihedral $n$-body problem,, Nonlinearity, 21 (2008), 1.  doi: 10.1088/0951-7715/21/6/009.  Google Scholar

[13]

D. L. Ferrario and S. Terracini, On the existence of collisionless equivariant minimizers for the classical n-body problem,, Invent. Math., 155 (2004), 305.  doi: 10.1007/s00222-003-0322-7.  Google Scholar

[14]

R. McGehee, Triple collision in the collinear three-body problem,, Invent. Math., 27 (1974), 191.   Google Scholar

[15]

R. Moeckel, Orbits of the three-body problem which pass infinitely close to triple collision,, Amer. J. Math., 103 (1981), 1323.  doi: 10.2307/2374233.  Google Scholar

[16]

R. Moeckel, Orbits near triple collision in the three-body problem,, Indiana Univ. Math. J., 32 (1983), 221.  doi: 10.1512/iumj.1983.32.32020.  Google Scholar

[17]

M. Salomone and Z. Xia, Non-planar minimizers and rotational symmetry in the $N$-body problem,, J. Differential Equations, 215 (2005), 1.  doi: 10.1016/j.jde.2004.11.004.  Google Scholar

[18]

C. Simó and E. Lacomba, Analysis of some degenerate quadruple collisions,, Celestial Mech., 28 (1982), 49.  doi: 10.1007/BF01230659.  Google Scholar

[19]

C. Vidal, The tetrahedral $4$-body problem with rotation,, Celestial Mech. Dynam. Astronom., 71 (), 15.  doi: 10.1023/A:1008397202674.  Google Scholar

[1]

Eduardo Piña. Computing collinear 4-Body Problem central configurations with given masses. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1215-1230. doi: 10.3934/dcds.2013.33.1215

[2]

Rodrigo Abarzúa, Nicolas Thériault, Roberto Avanzi, Ismael Soto, Miguel Alfaro. Optimization of the arithmetic of the ideal class group for genus 4 hyperelliptic curves over projective coordinates. Advances in Mathematics of Communications, 2010, 4 (2) : 115-139. doi: 10.3934/amc.2010.4.115

[3]

Qunyao Yin, Shiqing Zhang. New periodic solutions for the circular restricted 3-body and 4-body problems. Communications on Pure & Applied Analysis, 2010, 9 (1) : 249-260. doi: 10.3934/cpaa.2010.9.249

[4]

Gregory M. Manning. Some results on the $m(4)$ problem of Erdos and Hajnal. Electronic Research Announcements, 1995, 1: 112-113.

[5]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[6]

Edward Belbruno. Random walk in the three-body problem and applications. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 519-540. doi: 10.3934/dcdss.2008.1.519

[7]

Ernesto A. Lacomba, Mario Medina. Oscillatory motions in the rectangular four body problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 557-587. doi: 10.3934/dcdss.2008.1.557

[8]

Robert M. Strain. Coordinates in the relativistic Boltzmann theory. Kinetic & Related Models, 2011, 4 (1) : 345-359. doi: 10.3934/krm.2011.4.345

[9]

Nai-Chia Chen. Symmetric periodic orbits in three sub-problems of the $N$-body problem. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1523-1548. doi: 10.3934/dcdsb.2014.19.1523

[10]

Gianni Arioli. Branches of periodic orbits for the planar restricted 3-body problem. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 745-755. doi: 10.3934/dcds.2004.11.745

[11]

Richard Moeckel. A topological existence proof for the Schubart orbits in the collinear three-body problem. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 609-620. doi: 10.3934/dcdsb.2008.10.609

[12]

Marcel Guardia, Tere M. Seara, Pau Martín, Lara Sabbagh. Oscillatory orbits in the restricted elliptic planar three body problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 229-256. doi: 10.3934/dcds.2017009

[13]

Anete S. Cavalcanti. An existence proof of a symmetric periodic orbit in the octahedral six-body problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1903-1922. doi: 10.3934/dcds.2017080

[14]

Vasile Mioc, Ernesto Pérez-Chavela. The 2-body problem under Fock's potential. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 611-629. doi: 10.3934/dcdss.2008.1.611

[15]

Martha Alvarez-Ramírez, Joaquín Delgado. Blow up of the isosceles 3--body problem with an infinitesimal mass. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1149-1173. doi: 10.3934/dcds.2003.9.1149

[16]

Martha Alvarez, Joaquin Delgado, Jaume Llibre. On the spatial central configurations of the 5--body problem and their bifurcations. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 505-518. doi: 10.3934/dcdss.2008.1.505

[17]

Mitsuru Shibayama. Non-integrability of the collinear three-body problem. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 299-312. doi: 10.3934/dcds.2011.30.299

[18]

Eduardo S. G. Leandro. On the Dziobek configurations of the restricted $(N+1)$-body problem with equal masses. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 589-595. doi: 10.3934/dcdss.2008.1.589

[19]

Richard Moeckel. A proof of Saari's conjecture for the three-body problem in $\R^d$. Discrete & Continuous Dynamical Systems - S, 2008, 1 (4) : 631-646. doi: 10.3934/dcdss.2008.1.631

[20]

G. Bellettini, G. Fusco, G. F. Gronchi. Regularization of the two-body problem via smoothing the potential. Communications on Pure & Applied Analysis, 2003, 2 (3) : 323-353. doi: 10.3934/cpaa.2003.2.323

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]