-
Previous Article
Equivariant Conley index versus degree for equivariant gradient maps
- DCDS-S Home
- This Issue
-
Next Article
Dynamics of the the dihedral four-body problem
Bifurcation of periodic solutions from a ring configuration of discrete nonlinear oscillators
1. | Depto. Matemticas y Mecnica |
2. | IIMAS-UNAM, FENOMEC |
3. | Apdo. Postal 20-726, 01000 Mxico D.F. |
References:
[1] |
AIMS Series on Differential Equations & Dynamical Systems, 1. American Institute of Mathematical Sciences (AIMS), 2006. |
[2] |
in "Proceedings of the 3rd Conference on Localization and Energy Transfer in Nonlinear Systems" (editor, Luis Vázquez), 44-67. NJ: World Scientific, Singapore, (2003). |
[3] | |
[4] |
Journal of Differential Equations, 251 (2011), 3202-3227.
doi: 10.1016/j.jde.2011.06.021. |
[5] | |
[6] |
Journal of Differential Equations, 252 (2012), 5662-5678.
doi: 10.1016/j.jde.2012.01.044. |
[7] |
in "Topological Nonlinear Analysis" Progr. Nonlinear Differential Equations Appl., 15, 341-463. Birkhäuser Boston, (1995). |
[8] |
De Gruyter Series in Nonlinear Analysis and Applications, 8. Walter de Gruyter, Berlin, 2003.
doi: 10.1515/9783110200027. |
[9] |
J. Phys. A: Math. Gen., 37 (2004), 2201-2222.
doi: 10.1088/0305-4470/37/6/017. |
[10] | |
[11] |
Phys. Lett. A, 374 (2010), 3912-1919.
doi: 10.1016/j.physleta.2010.07.022. |
[12] |
Physica D., 238 (2009), 687-698.
doi: 10.1016/j.physd.2009.01.001. |
[13] |
Milan J. Math., 73 (2005), 103-144.
doi: 10.1007/s00032-005-0040-2. |
show all references
References:
[1] |
AIMS Series on Differential Equations & Dynamical Systems, 1. American Institute of Mathematical Sciences (AIMS), 2006. |
[2] |
in "Proceedings of the 3rd Conference on Localization and Energy Transfer in Nonlinear Systems" (editor, Luis Vázquez), 44-67. NJ: World Scientific, Singapore, (2003). |
[3] | |
[4] |
Journal of Differential Equations, 251 (2011), 3202-3227.
doi: 10.1016/j.jde.2011.06.021. |
[5] | |
[6] |
Journal of Differential Equations, 252 (2012), 5662-5678.
doi: 10.1016/j.jde.2012.01.044. |
[7] |
in "Topological Nonlinear Analysis" Progr. Nonlinear Differential Equations Appl., 15, 341-463. Birkhäuser Boston, (1995). |
[8] |
De Gruyter Series in Nonlinear Analysis and Applications, 8. Walter de Gruyter, Berlin, 2003.
doi: 10.1515/9783110200027. |
[9] |
J. Phys. A: Math. Gen., 37 (2004), 2201-2222.
doi: 10.1088/0305-4470/37/6/017. |
[10] | |
[11] |
Phys. Lett. A, 374 (2010), 3912-1919.
doi: 10.1016/j.physleta.2010.07.022. |
[12] |
Physica D., 238 (2009), 687-698.
doi: 10.1016/j.physd.2009.01.001. |
[13] |
Milan J. Math., 73 (2005), 103-144.
doi: 10.1007/s00032-005-0040-2. |
[1] |
Anna Go??biewska, S?awomir Rybicki. Equivariant Conley index versus degree for equivariant gradient maps. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 985-997. doi: 10.3934/dcdss.2013.6.985 |
[2] |
Zalman Balanov, Wieslaw Krawcewicz, Haibo Ruan. Applied equivariant degree, part I: An axiomatic approach to primary degree. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 983-1016. doi: 10.3934/dcds.2006.15.983 |
[3] |
Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214 |
[4] |
Silvia Cingolani, Mónica Clapp. Symmetric semiclassical states to a magnetic nonlinear Schrödinger equation via equivariant Morse theory. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1263-1281. doi: 10.3934/cpaa.2010.9.1263 |
[5] |
Todd Young. A result in global bifurcation theory using the Conley index. Discrete and Continuous Dynamical Systems, 1996, 2 (3) : 387-396. doi: 10.3934/dcds.1996.2.387 |
[6] |
J. F. Toland. Path-connectedness in global bifurcation theory. Electronic Research Archive, 2021, 29 (6) : 4199-4213. doi: 10.3934/era.2021079 |
[7] |
Ruediger Landes. Stable and unstable initial configuration in the theory wave fronts. Discrete and Continuous Dynamical Systems - S, 2012, 5 (4) : 797-808. doi: 10.3934/dcdss.2012.5.797 |
[8] |
Wenxian Shen. Global attractor and rotation number of a class of nonlinear noisy oscillators. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 597-611. doi: 10.3934/dcds.2007.18.597 |
[9] |
R. Yamapi, R.S. MacKay. Stability of synchronization in a shift-invariant ring of mutually coupled oscillators. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 973-996. doi: 10.3934/dcdsb.2008.10.973 |
[10] |
Tetsutaro Shibata. Global behavior of bifurcation curves for the nonlinear eigenvalue problems with periodic nonlinear terms. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2139-2147. doi: 10.3934/cpaa.2018102 |
[11] |
Zalman Balanov, Meymanat Farzamirad, Wieslaw Krawcewicz, Haibo Ruan. Applied equivariant degree. part II: Symmetric Hopf bifurcations of functional differential equations. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 923-960. doi: 10.3934/dcds.2006.16.923 |
[12] |
Xiaoxue Zhao, Zhuchun Li, Xiaoping Xue. Formation, stability and basin of phase-locking for Kuramoto oscillators bidirectionally coupled in a ring. Networks and Heterogeneous Media, 2018, 13 (2) : 323-337. doi: 10.3934/nhm.2018014 |
[13] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks and Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[14] |
Dan-Andrei Geba, Manoussos G. Grillakis. Large data global regularity for the classical equivariant Skyrme model. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5537-5576. doi: 10.3934/dcds.2018244 |
[15] |
Chun-Hsiung Hsia, Chang-Yeol Jung, Bongsuk Kwon. On the global convergence of frequency synchronization for Kuramoto and Winfree oscillators. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3319-3334. doi: 10.3934/dcdsb.2018322 |
[16] |
Johanna D. García-Saldaña, Armengol Gasull, Hector Giacomini. Bifurcation values for a family of planar vector fields of degree five. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 669-701. doi: 10.3934/dcds.2015.35.669 |
[17] |
Juan Sánchez, Marta Net, José M. Vega. Amplitude equations close to a triple-(+1) bifurcation point of D4-symmetric periodic orbits in O(2)-equivariant systems. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1357-1380. doi: 10.3934/dcdsb.2006.6.1357 |
[18] |
Jianjun Yuan. Global existence and scattering of equivariant defocusing Chern-Simons-Schrödinger system. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5541-5570. doi: 10.3934/dcds.2020237 |
[19] |
Jingli Ren, Gail S. K. Wolkowicz. Preface: Recent advances in bifurcation theory and application. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : i-ii. doi: 10.3934/dcdss.2020417 |
[20] |
Gunog Seo, Gail S. K. Wolkowicz. Pest control by generalist parasitoids: A bifurcation theory approach. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3157-3187. doi: 10.3934/dcdss.2020163 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]