\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Equivariant Conley index versus degree for equivariant gradient maps

Abstract Related Papers Cited by
  • In this article we study the relationship between the degree forinvariant strongly indefinite functionals and the equivariantConley index. We prove that, under certain assumptions, achange of the equivariant Conley indices is equivalent to thechange of the degrees for equivariant gradient maps. Moreover, weformulate easy to verify sufficient conditions for theexistence of a global bifurcation of critical orbits of invariantstrongly indefinite functionals.
    Mathematics Subject Classification: Primary: 37G40; Secondary: 58E09.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Anal. Math., 76 (1998), 321-335.doi: 10.1007/BF02786940.

    [2]

    J. Fixed Point Theory App., 8 (2010), 1-74.doi: 10.1007/s11784-010-0033-9.

    [3]

    Israel Math. Conf. Proc., Conf. Nonlinear Analysis and Optimization, Haifa, Israel, (2008), AMS Contemporary Mathematics, 514 (2010), 45-84.doi: 10.1090/conm/514/10099.

    [4]

    Kluwer Academic Publishers, 2004.

    [5]

    J. Fixed P. Th. and Appl., 7 (2010), 145-160.doi: 10.1007/s11784-010-0013-0.

    [6]

    Lect. Notes in Math., 1560, Springer-Verlag, Berlin, 1993.

    [7]

    Math. Z., 127 (1972), 105-126.

    [8]

    Academic Press, Inc. LTD, 1972.

    [9]

    Nonl. Anal. TMA, 12 (1988), 51-61.doi: 10.1016/0362-546X(88)90012-0.

    [10]

    CBMS Regional Conference Series in Mathematics, 38, AMS, Providence, R. I., 1978.

    [11]

    Ann. Inst. H.Poincaré, Ana. Non Lin., 2, (1985), 329-370.

    [12]

    Fund. Math., 185 (2005), 1-18.doi: 10.4064/fm185-1-1.

    [13]

    Springer-Verlag, Berlin, 1979.

    [14]

    Walter de Gruyter, Berlin-New York, 1987.doi: 10.1515/9783110858372.312.

    [15]

    Springer-Verlag, Berlin Heidelberg New York, 2000.doi: 10.1007/978-3-642-56936-4.

    [16]

    Nonl. Anal. TMA, 36 (1999), 101-118.doi: 10.1016/S0362-546X(98)00017-0.

    [17]

    Erg. Th. and Dynam. Sys., 7 (1987), 93-103.doi: 10.1017/S0143385700003825.

    [18]

    Topological Nonlinear Analysis, Degree, Singularity and Variations, PNDLE 27, Birkhäuser, (1997), 247-272.

    [19]

    Studia Math., 134, (1999), 217-233.

    [20]

    Nonl. Anal TMA, 74 (2011), 1823-1834.doi: 10.1016/j.na.2010.10.055.

    [21]

    Mem. AMS, 174, 1976.

    [22]

    Topological Nonlinear Analysis, Degree, Singularity and Variations, PNDE, 15, Birkhäuser, (1995), 341-463.

    [23]

    J. Diff. Equat., 170 (2001), 22-50.doi: 10.1006/jdeq.2000.3818.

    [24]

    Nonl. Anal. TMA, 51 (2002), 33-66.doi: 10.1016/S0362-546X(01)00811-2.

    [25]

    Nonl. Anal. TMA, 73 (2010), 2779-2791.doi: 10.1016/j.na.2010.06.001.

    [26]

    Conf. Sem. Mat. Univ. Bari, 132 (1973).

    [27]

    Man. Math., 63 (1989), 99-114.doi: 10.1007/BF01173705.

    [28]

    Handbook of Dynamical Systems, 2, North-Holland, Amsterdam, (2002), 393-460.doi: 10.1016/S1874-575X(02)80030-3.

    [29]

    Courant Institute of Mathematical Sciences, New York University, 1974.

    [30]

    Comm. Pure Appl. Math., 23 (1970), 939-961.

    [31]

    J. Func. Anal., 7 (1971), 487-513.

    [32]

    Contributions to Nonlinear Functional Analysis, E Academic Press, New York, (1971), 11-36.

    [33]

    J. Diff. Equat., 202 (2004), 284-305.doi: 10.1016/j.jde.2004.03.037.

    [34]

    Nonl. Anal. TMA, 68 (2008), 1479-1516.doi: 10.1016/j.na.2006.12.039.

    [35]

    Trans. Amer. Math. Soc., 269 (1982), 351-382.doi: 10.2307/1998452.

    [36]

    Nonl. Anal. TMA, 23 (1994), 83-102.doi: 10.1016/0362-546X(94)90253-4.

    [37]

    Topol. Meth. Nonl. Anal., 9 (1997), 383-417.

    [38]

    Milan J. Math., 73 (2005), 103-144.doi: 10.1007/s00032-005-0040-2.

    [39]

    Adv. Nonl. Stud., 11 (2011), 929-940.

    [40]

    TAMS, 291 (1985), 1-41.doi: 10.2307/1999893.

    [41]

    Bull. London Math. Soc., 22 (1990), 113-140.doi: 10.1112/blms/22.2.113.

    [42]

    Invent. Math., 100 (1990), 63-95.doi: 10.1007/BF01231181.

    [43]

    Fundamental Principles of Mathematical Science, 258, Springer-Verlag, New York-Berlin, 1983.

    [44]

    Math. Z., 125 (1972), 359-364.

    [45]

    CMBS Regional Conf. Ser. in Math., 5, AMS, Providence, R.I., 1970.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(124) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return