-
Previous Article
Unbounded sequences of cycles in general autonomous equations with periodic nonlinearities
- DCDS-S Home
- This Issue
-
Next Article
Bifurcation of periodic solutions from a ring configuration of discrete nonlinear oscillators
Equivariant Conley index versus degree for equivariant gradient maps
1. | Faculty of Mathematics and Computer Science |
2. | Nicolaus Copernicus University |
3. | ul. Chopina 12/18, PL-87-100 Toru? |
References:
[1] |
J. Anal. Math., 76 (1998), 321-335.
doi: 10.1007/BF02786940. |
[2] |
J. Fixed Point Theory App., 8 (2010), 1-74.
doi: 10.1007/s11784-010-0033-9. |
[3] |
Israel Math. Conf. Proc., Conf. Nonlinear Analysis and Optimization, Haifa, Israel, (2008), AMS Contemporary Mathematics, 514 (2010), 45-84.
doi: 10.1090/conm/514/10099. |
[4] | |
[5] |
J. Fixed P. Th. and Appl., 7 (2010), 145-160.
doi: 10.1007/s11784-010-0013-0. |
[6] | |
[7] | |
[8] | |
[9] |
Nonl. Anal. TMA, 12 (1988), 51-61.
doi: 10.1016/0362-546X(88)90012-0. |
[10] |
CBMS Regional Conference Series in Mathematics, 38, AMS, Providence, R. I., 1978. |
[11] | |
[12] |
Fund. Math., 185 (2005), 1-18.
doi: 10.4064/fm185-1-1. |
[13] | |
[14] |
Walter de Gruyter, Berlin-New York, 1987.
doi: 10.1515/9783110858372.312. |
[15] |
Springer-Verlag, Berlin Heidelberg New York, 2000.
doi: 10.1007/978-3-642-56936-4. |
[16] |
Nonl. Anal. TMA, 36 (1999), 101-118.
doi: 10.1016/S0362-546X(98)00017-0. |
[17] |
Erg. Th. and Dynam. Sys., 7 (1987), 93-103.
doi: 10.1017/S0143385700003825. |
[18] |
Topological Nonlinear Analysis, Degree, Singularity and Variations, PNDLE 27, Birkhäuser, (1997), 247-272. |
[19] | |
[20] |
Nonl. Anal TMA, 74 (2011), 1823-1834.
doi: 10.1016/j.na.2010.10.055. |
[21] | |
[22] |
Topological Nonlinear Analysis, Degree, Singularity and Variations, PNDE, 15, Birkhäuser, (1995), 341-463. |
[23] |
J. Diff. Equat., 170 (2001), 22-50.
doi: 10.1006/jdeq.2000.3818. |
[24] |
Nonl. Anal. TMA, 51 (2002), 33-66.
doi: 10.1016/S0362-546X(01)00811-2. |
[25] |
Nonl. Anal. TMA, 73 (2010), 2779-2791.
doi: 10.1016/j.na.2010.06.001. |
[26] | |
[27] |
Man. Math., 63 (1989), 99-114.
doi: 10.1007/BF01173705. |
[28] |
Handbook of Dynamical Systems, 2, North-Holland, Amsterdam, (2002), 393-460.
doi: 10.1016/S1874-575X(02)80030-3. |
[29] |
Courant Institute of Mathematical Sciences, New York University, 1974. |
[30] | |
[31] | |
[32] |
Contributions to Nonlinear Functional Analysis, E Academic Press, New York, (1971), 11-36. |
[33] |
J. Diff. Equat., 202 (2004), 284-305.
doi: 10.1016/j.jde.2004.03.037. |
[34] |
Nonl. Anal. TMA, 68 (2008), 1479-1516.
doi: 10.1016/j.na.2006.12.039. |
[35] |
Trans. Amer. Math. Soc., 269 (1982), 351-382.
doi: 10.2307/1998452. |
[36] |
Nonl. Anal. TMA, 23 (1994), 83-102.
doi: 10.1016/0362-546X(94)90253-4. |
[37] | |
[38] |
Milan J. Math., 73 (2005), 103-144.
doi: 10.1007/s00032-005-0040-2. |
[39] | |
[40] |
TAMS, 291 (1985), 1-41.
doi: 10.2307/1999893. |
[41] |
Bull. London Math. Soc., 22 (1990), 113-140.
doi: 10.1112/blms/22.2.113. |
[42] |
Invent. Math., 100 (1990), 63-95.
doi: 10.1007/BF01231181. |
[43] |
Fundamental Principles of Mathematical Science, 258, Springer-Verlag, New York-Berlin, 1983. |
[44] | |
[45] |
CMBS Regional Conf. Ser. in Math., 5, AMS, Providence, R.I., 1970. |
show all references
References:
[1] |
J. Anal. Math., 76 (1998), 321-335.
doi: 10.1007/BF02786940. |
[2] |
J. Fixed Point Theory App., 8 (2010), 1-74.
doi: 10.1007/s11784-010-0033-9. |
[3] |
Israel Math. Conf. Proc., Conf. Nonlinear Analysis and Optimization, Haifa, Israel, (2008), AMS Contemporary Mathematics, 514 (2010), 45-84.
doi: 10.1090/conm/514/10099. |
[4] | |
[5] |
J. Fixed P. Th. and Appl., 7 (2010), 145-160.
doi: 10.1007/s11784-010-0013-0. |
[6] | |
[7] | |
[8] | |
[9] |
Nonl. Anal. TMA, 12 (1988), 51-61.
doi: 10.1016/0362-546X(88)90012-0. |
[10] |
CBMS Regional Conference Series in Mathematics, 38, AMS, Providence, R. I., 1978. |
[11] | |
[12] |
Fund. Math., 185 (2005), 1-18.
doi: 10.4064/fm185-1-1. |
[13] | |
[14] |
Walter de Gruyter, Berlin-New York, 1987.
doi: 10.1515/9783110858372.312. |
[15] |
Springer-Verlag, Berlin Heidelberg New York, 2000.
doi: 10.1007/978-3-642-56936-4. |
[16] |
Nonl. Anal. TMA, 36 (1999), 101-118.
doi: 10.1016/S0362-546X(98)00017-0. |
[17] |
Erg. Th. and Dynam. Sys., 7 (1987), 93-103.
doi: 10.1017/S0143385700003825. |
[18] |
Topological Nonlinear Analysis, Degree, Singularity and Variations, PNDLE 27, Birkhäuser, (1997), 247-272. |
[19] | |
[20] |
Nonl. Anal TMA, 74 (2011), 1823-1834.
doi: 10.1016/j.na.2010.10.055. |
[21] | |
[22] |
Topological Nonlinear Analysis, Degree, Singularity and Variations, PNDE, 15, Birkhäuser, (1995), 341-463. |
[23] |
J. Diff. Equat., 170 (2001), 22-50.
doi: 10.1006/jdeq.2000.3818. |
[24] |
Nonl. Anal. TMA, 51 (2002), 33-66.
doi: 10.1016/S0362-546X(01)00811-2. |
[25] |
Nonl. Anal. TMA, 73 (2010), 2779-2791.
doi: 10.1016/j.na.2010.06.001. |
[26] | |
[27] |
Man. Math., 63 (1989), 99-114.
doi: 10.1007/BF01173705. |
[28] |
Handbook of Dynamical Systems, 2, North-Holland, Amsterdam, (2002), 393-460.
doi: 10.1016/S1874-575X(02)80030-3. |
[29] |
Courant Institute of Mathematical Sciences, New York University, 1974. |
[30] | |
[31] | |
[32] |
Contributions to Nonlinear Functional Analysis, E Academic Press, New York, (1971), 11-36. |
[33] |
J. Diff. Equat., 202 (2004), 284-305.
doi: 10.1016/j.jde.2004.03.037. |
[34] |
Nonl. Anal. TMA, 68 (2008), 1479-1516.
doi: 10.1016/j.na.2006.12.039. |
[35] |
Trans. Amer. Math. Soc., 269 (1982), 351-382.
doi: 10.2307/1998452. |
[36] |
Nonl. Anal. TMA, 23 (1994), 83-102.
doi: 10.1016/0362-546X(94)90253-4. |
[37] | |
[38] |
Milan J. Math., 73 (2005), 103-144.
doi: 10.1007/s00032-005-0040-2. |
[39] | |
[40] |
TAMS, 291 (1985), 1-41.
doi: 10.2307/1999893. |
[41] |
Bull. London Math. Soc., 22 (1990), 113-140.
doi: 10.1112/blms/22.2.113. |
[42] |
Invent. Math., 100 (1990), 63-95.
doi: 10.1007/BF01231181. |
[43] |
Fundamental Principles of Mathematical Science, 258, Springer-Verlag, New York-Berlin, 1983. |
[44] | |
[45] |
CMBS Regional Conf. Ser. in Math., 5, AMS, Providence, R.I., 1970. |
[1] |
Zalman Balanov, Wieslaw Krawcewicz, Haibo Ruan. Applied equivariant degree, part I: An axiomatic approach to primary degree. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 983-1016. doi: 10.3934/dcds.2006.15.983 |
[2] |
Jochen Brüning, Franz W. Kamber, Ken Richardson. The equivariant index theorem for transversally elliptic operators and the basic index theorem for Riemannian foliations. Electronic Research Announcements, 2010, 17: 138-154. doi: 10.3934/era.2010.17.138 |
[3] |
Zalman Balanov, Meymanat Farzamirad, Wieslaw Krawcewicz, Haibo Ruan. Applied equivariant degree. part II: Symmetric Hopf bifurcations of functional differential equations. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 923-960. doi: 10.3934/dcds.2006.16.923 |
[4] |
Aravind Asok, James Parson. Equivariant sheaves on some spherical varieties. Electronic Research Announcements, 2011, 18: 119-130. doi: 10.3934/era.2011.18.119 |
[5] |
Jiaquan Liu, Yuxia Guo, Pingan Zeng. Relationship of the morse index and the $L^\infty$ bound of solutions for a strongly indefinite differential superlinear system. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 107-119. doi: 10.3934/dcds.2006.16.107 |
[6] |
Todd Young. A result in global bifurcation theory using the Conley index. Discrete and Continuous Dynamical Systems, 1996, 2 (3) : 387-396. doi: 10.3934/dcds.1996.2.387 |
[7] |
M. C. Carbinatto, K. Mischaikow. Horseshoes and the Conley index spectrum - II: the theorem is sharp. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 599-616. doi: 10.3934/dcds.1999.5.599 |
[8] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks and Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[9] |
Jiaxi Huang, Youde Wang, Lifeng Zhao. Equivariant Schrödinger map flow on two dimensional hyperbolic space. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4379-4425. doi: 10.3934/dcds.2020184 |
[10] |
Pietro-Luciano Buono, V.G. LeBlanc. Equivariant versal unfoldings for linear retarded functional differential equations. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 283-302. doi: 10.3934/dcds.2005.12.283 |
[11] |
Dan-Andrei Geba, Manoussos G. Grillakis. Large data global regularity for the classical equivariant Skyrme model. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5537-5576. doi: 10.3934/dcds.2018244 |
[12] |
Marian Gidea. Leray functor and orbital Conley index for non-invariant sets. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 617-630. doi: 10.3934/dcds.1999.5.617 |
[13] |
Jintao Wang, Desheng Li, Jinqiao Duan. On the shape Conley index theory of semiflows on complete metric spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1629-1647. doi: 10.3934/dcds.2016.36.1629 |
[14] |
Ketty A. De Rezende, Mariana G. Villapouca. Discrete conley index theory for zero dimensional basic sets. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1359-1387. doi: 10.3934/dcds.2017056 |
[15] |
Silvia Cingolani, Mónica Clapp. Symmetric semiclassical states to a magnetic nonlinear Schrödinger equation via equivariant Morse theory. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1263-1281. doi: 10.3934/cpaa.2010.9.1263 |
[16] |
Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214 |
[17] |
Jianjun Yuan. Global existence and scattering of equivariant defocusing Chern-Simons-Schrödinger system. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5541-5570. doi: 10.3934/dcds.2020237 |
[18] |
Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10. |
[19] |
Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413-435. doi: 10.3934/jgm.2016014 |
[20] |
Nikolaos Karaliolios. Differentiable Rigidity for quasiperiodic cocycles in compact Lie groups. Journal of Modern Dynamics, 2017, 11: 125-142. doi: 10.3934/jmd.2017006 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]