April  2013, 6(4): 999-1016. doi: 10.3934/dcdss.2013.6.999

Unbounded sequences of cycles in general autonomous equations with periodic nonlinearities

1. 

Institute for Information Transmission Problems, Russian Academy of Sciences

2. 

19 Bol.Karetny Lane, Moscow GSP-4, 127994, Russia; National Research University Higher School of Economics

3. 

20 Myasnitskaya Street, Moscow 101000

Received  April 2011 Revised  February 2012 Published  December 2012

Autonomous higher order differential equations with scalarnonlinearities, periodic with respect to the main phasevariable under appropriate generic conditions, have an infinitesequence of isolated cycles with amplitudes growing to infinityand periods converging to some specific value $T_{0}$.
Citation: Alexander M. Krasnoselskii. Unbounded sequences of cycles in general autonomous equations with periodic nonlinearities. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 999-1016. doi: 10.3934/dcdss.2013.6.999
References:
[1]

C. A. Desoer and M. Vidyasagar, "Feedback Systems: Input-Output Properties,", Academic Press, (1975).   Google Scholar

[2]

A. Isidori, "Nonlinear Control Systems,", Springer Verlag, (1995).   Google Scholar

[3]

H. K. Khalil, "Nonlinear Systems,", Prentice Hall, (2002).   Google Scholar

[4]

A. M. Krasnosel'skii, Unbounded sequences of cycles in autonomous control systems,, Automation and Remote Control, 60 (1999), 1117.   Google Scholar

[5]

A. M. Krasnosel'skii and M. A. Krasnosel'skii, Vector fields in the direct product of spaces, and applications to differential equations,, Differential Equations, 33 (1997), 59.   Google Scholar

[6]

A. M. Krasnosel'skii and J. Mawhin, Periodic solutions of equations with oscillating nonlinearities,, Mathematical and Computer Modelling, 32 (2000), 1445.  doi: 10.1016/S0895-7177(00)00216-8.  Google Scholar

[7]

A. M. Krasnosel'skii and D. I. Rachinskii, On nonconnected unbounded sets of forced oscillations,, Doklady Mathematics, 78 (2008), 660.  doi: 10.1134/S1064562408050049.  Google Scholar

[8]

M. A. Krasnosel'skii and P. P. Zabreiko, "Geometrical Methods of Nonlinear Analysis,", Springer-Verlag, (1984).  doi: 10.1007/978-3-642-69409-7.  Google Scholar

[9]

F. W. S. Olver, "Asymptotics and Special Functions,", New York, (1974).   Google Scholar

show all references

References:
[1]

C. A. Desoer and M. Vidyasagar, "Feedback Systems: Input-Output Properties,", Academic Press, (1975).   Google Scholar

[2]

A. Isidori, "Nonlinear Control Systems,", Springer Verlag, (1995).   Google Scholar

[3]

H. K. Khalil, "Nonlinear Systems,", Prentice Hall, (2002).   Google Scholar

[4]

A. M. Krasnosel'skii, Unbounded sequences of cycles in autonomous control systems,, Automation and Remote Control, 60 (1999), 1117.   Google Scholar

[5]

A. M. Krasnosel'skii and M. A. Krasnosel'skii, Vector fields in the direct product of spaces, and applications to differential equations,, Differential Equations, 33 (1997), 59.   Google Scholar

[6]

A. M. Krasnosel'skii and J. Mawhin, Periodic solutions of equations with oscillating nonlinearities,, Mathematical and Computer Modelling, 32 (2000), 1445.  doi: 10.1016/S0895-7177(00)00216-8.  Google Scholar

[7]

A. M. Krasnosel'skii and D. I. Rachinskii, On nonconnected unbounded sets of forced oscillations,, Doklady Mathematics, 78 (2008), 660.  doi: 10.1134/S1064562408050049.  Google Scholar

[8]

M. A. Krasnosel'skii and P. P. Zabreiko, "Geometrical Methods of Nonlinear Analysis,", Springer-Verlag, (1984).  doi: 10.1007/978-3-642-69409-7.  Google Scholar

[9]

F. W. S. Olver, "Asymptotics and Special Functions,", New York, (1974).   Google Scholar

[1]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[2]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[3]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[4]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[5]

Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020296

[6]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[7]

Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021006

[8]

Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390

[9]

Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495

[10]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[11]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[12]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[13]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[14]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

[15]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[16]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

[17]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[18]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[19]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[20]

Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]