-
Previous Article
On a structure of the fixed point set of homogeneous maps
- DCDS-S Home
- This Issue
-
Next Article
Equivariant Conley index versus degree for equivariant gradient maps
Unbounded sequences of cycles in general autonomous equations with periodic nonlinearities
1. | Institute for Information Transmission Problems, Russian Academy of Sciences |
2. | 19 Bol.Karetny Lane, Moscow GSP-4, 127994, Russia; National Research University Higher School of Economics |
3. | 20 Myasnitskaya Street, Moscow 101000 |
References:
[1] |
C. A. Desoer and M. Vidyasagar, "Feedback Systems: Input-Output Properties,", Academic Press, (1975).
|
[2] |
A. Isidori, "Nonlinear Control Systems,", Springer Verlag, (1995).
|
[3] |
H. K. Khalil, "Nonlinear Systems,", Prentice Hall, (2002). Google Scholar |
[4] |
A. M. Krasnosel'skii, Unbounded sequences of cycles in autonomous control systems,, Automation and Remote Control, 60 (1999), 1117.
|
[5] |
A. M. Krasnosel'skii and M. A. Krasnosel'skii, Vector fields in the direct product of spaces, and applications to differential equations,, Differential Equations, 33 (1997), 59.
|
[6] |
A. M. Krasnosel'skii and J. Mawhin, Periodic solutions of equations with oscillating nonlinearities,, Mathematical and Computer Modelling, 32 (2000), 1445.
doi: 10.1016/S0895-7177(00)00216-8. |
[7] |
A. M. Krasnosel'skii and D. I. Rachinskii, On nonconnected unbounded sets of forced oscillations,, Doklady Mathematics, 78 (2008), 660.
doi: 10.1134/S1064562408050049. |
[8] |
M. A. Krasnosel'skii and P. P. Zabreiko, "Geometrical Methods of Nonlinear Analysis,", Springer-Verlag, (1984).
doi: 10.1007/978-3-642-69409-7. |
[9] |
F. W. S. Olver, "Asymptotics and Special Functions,", New York, (1974).
|
show all references
References:
[1] |
C. A. Desoer and M. Vidyasagar, "Feedback Systems: Input-Output Properties,", Academic Press, (1975).
|
[2] |
A. Isidori, "Nonlinear Control Systems,", Springer Verlag, (1995).
|
[3] |
H. K. Khalil, "Nonlinear Systems,", Prentice Hall, (2002). Google Scholar |
[4] |
A. M. Krasnosel'skii, Unbounded sequences of cycles in autonomous control systems,, Automation and Remote Control, 60 (1999), 1117.
|
[5] |
A. M. Krasnosel'skii and M. A. Krasnosel'skii, Vector fields in the direct product of spaces, and applications to differential equations,, Differential Equations, 33 (1997), 59.
|
[6] |
A. M. Krasnosel'skii and J. Mawhin, Periodic solutions of equations with oscillating nonlinearities,, Mathematical and Computer Modelling, 32 (2000), 1445.
doi: 10.1016/S0895-7177(00)00216-8. |
[7] |
A. M. Krasnosel'skii and D. I. Rachinskii, On nonconnected unbounded sets of forced oscillations,, Doklady Mathematics, 78 (2008), 660.
doi: 10.1134/S1064562408050049. |
[8] |
M. A. Krasnosel'skii and P. P. Zabreiko, "Geometrical Methods of Nonlinear Analysis,", Springer-Verlag, (1984).
doi: 10.1007/978-3-642-69409-7. |
[9] |
F. W. S. Olver, "Asymptotics and Special Functions,", New York, (1974).
|
[1] |
Xuelei Wang, Dingbian Qian, Xiying Sun. Periodic solutions of second order equations with asymptotical non-resonance. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4715-4726. doi: 10.3934/dcds.2018207 |
[2] |
Feliz Minhós, Hugo Carrasco. Solvability of higher-order BVPs in the half-line with unbounded nonlinearities. Conference Publications, 2015, 2015 (special) : 841-850. doi: 10.3934/proc.2015.0841 |
[3] |
C. Rebelo. Multiple periodic solutions of second order equations with asymmetric nonlinearities. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 25-34. doi: 10.3934/dcds.1997.3.25 |
[4] |
Zaihong Wang. Periodic solutions of the second order differential equations with asymmetric nonlinearities depending on the derivatives. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 751-770. doi: 10.3934/dcds.2003.9.751 |
[5] |
Anna Capietto, Walter Dambrosio, Tiantian Ma, Zaihong Wang. Unbounded solutions and periodic solutions of perturbed isochronous Hamiltonian systems at resonance. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1835-1856. doi: 10.3934/dcds.2013.33.1835 |
[6] |
Feliz Minhós, João Fialho. Existence and multiplicity of solutions in fourth order BVPs with unbounded nonlinearities. Conference Publications, 2013, 2013 (special) : 555-564. doi: 10.3934/proc.2013.2013.555 |
[7] |
Shouchuan Hu, Nikolaos S. Papageorgiou. Double resonance for Dirichlet problems with unbounded indefinite potential and combined nonlinearities. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2005-2021. doi: 10.3934/cpaa.2012.11.2005 |
[8] |
José Luis Bravo, Manuel Fernández, Antonio Tineo. Periodic solutions of a periodic scalar piecewise ode. Communications on Pure & Applied Analysis, 2007, 6 (1) : 213-228. doi: 10.3934/cpaa.2007.6.213 |
[9] |
George J. Bautista, Ademir F. Pazoto. Decay of solutions for a dissipative higher-order Boussinesq system on a periodic domain. Communications on Pure & Applied Analysis, 2020, 19 (2) : 747-769. doi: 10.3934/cpaa.2020035 |
[10] |
V. Mastropietro, Michela Procesi. Lindstedt series for periodic solutions of beam equations with quadratic and velocity dependent nonlinearities. Communications on Pure & Applied Analysis, 2006, 5 (1) : 1-28. doi: 10.3934/cpaa.2006.5.1 |
[11] |
Yuan Guo, Xiaofei Gao, Desheng Li. Structure of the set of bounded solutions for a class of nonautonomous second order differential equations. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1607-1616. doi: 10.3934/cpaa.2010.9.1607 |
[12] |
Alina Gleska, Małgorzata Migda. Qualitative properties of solutions of higher order difference equations with deviating arguments. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 239-252. doi: 10.3934/dcdsb.2018016 |
[13] |
Hiroshi Takeda. Global existence of solutions for higher order nonlinear damped wave equations. Conference Publications, 2011, 2011 (Special) : 1358-1367. doi: 10.3934/proc.2011.2011.1358 |
[14] |
Aliang Xia, Jianfu Yang. Normalized solutions of higher-order Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 447-462. doi: 10.3934/dcds.2019018 |
[15] |
D. Bonheure, C. Fabry, D. Smets. Periodic solutions of forced isochronous oscillators at resonance. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 907-930. doi: 10.3934/dcds.2002.8.907 |
[16] |
Zhiguo Wang, Yiqian Wang, Daxiong Piao. A new method for the boundedness of semilinear Duffing equations at resonance. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3961-3991. doi: 10.3934/dcds.2016.36.3961 |
[17] |
P.E. Kloeden, Pedro Marín-Rubio, José Real. Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 785-802. doi: 10.3934/cpaa.2009.8.785 |
[18] |
V. Barbu. Periodic solutions to unbounded Hamiltonian system. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 277-283. doi: 10.3934/dcds.1995.1.277 |
[19] |
Shu-Zhi Song, Shang-Jie Chen, Chun-Lei Tang. Existence of solutions for Kirchhoff type problems with resonance at higher eigenvalues. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6453-6473. doi: 10.3934/dcds.2016078 |
[20] |
Henning Struchtrup. Unique moment set from the order of magnitude method. Kinetic & Related Models, 2012, 5 (2) : 417-440. doi: 10.3934/krm.2012.5.417 |
2018 Impact Factor: 0.545
Tools
Metrics
Other articles
by authors
[Back to Top]