February  2014, 7(1): 1-16. doi: 10.3934/dcdss.2014.7.1

Doubly nonlinear parabolic equations involving variable exponents

1. 

Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan

Received  February 2012 Revised  January 2013 Published  July 2013

This paper is concerned with doubly nonlinear parabolic equations involving variable exponents. The existence of solutions is proved by developing an abstract theory on doubly nonlinear evolution equations governed by gradient operators. In contrast to constant exponent cases, two nonlinear terms have inhomogeneous growth and some difficulty may occur in establishing energy estimates. Our method of proof relies on an efficient use of Legendre-Fenchel transforms of convex functionals and an energy method.
Citation: Goro Akagi. Doubly nonlinear parabolic equations involving variable exponents. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 1-16. doi: 10.3934/dcdss.2014.7.1
References:
[1]

E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech. Anal., 156 (2001), 121-140. doi: 10.1007/s002050100117.

[2]

G. Akagi, Doubly nonlinear evolution equations governed by time-dependent subdifferentials in reflexive Banach spaces, J. Differential Equations, 231 (2006), 32-56. doi: 10.1016/j.jde.2006.04.006.

[3]

G. Akagi and K. Matsuura, Nonlinear diffusion equations driven by the $p(\cdot)$-Laplacian, Nonlinear Differential Equations and Applications (NoDEA), 20 (2013), 37-64. doi: 10.1007/s00030-012-0153-6.

[4]

G. Akagi, Energy solutions of the Cauchy-Neumann problem for porous medium equations, Discrete and Continuous Dynamical Systems, Dynamical Systems, Differential Equations and Applications. $7^{th}$th AIMS Conference, suppl., (2009), 1-10.

[5]

H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z., 183 (1983), 311-341. doi: 10.1007/BF01176474.

[6]

S. Antontsev and S. Shmarev, Parabolic equations with double variable nonlinearities, Math. Comput. Simulation, 81 (2011), 2018-2032. doi: 10.1016/j.matcom.2010.12.015.

[7]

S. Antontsev and S. Shmarev, Extinction of solutions of parabolic equations with variable anisotropic nonlinearities, Proc. Steklov Inst. Math., 261 (2008), 11-21. doi: 10.1134/S0081543808020028.

[8]

S. N. Antontsev and S. I. Shmarev, A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions, Nonlinear Anal., 60 (2005), 515-545. doi: 10.1016/j.na.2004.09.026.

[9]

V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces,'' Noordhoff, Leiden, 1976.

[10]

V. Barbu, Existence for nonlinear Volterra equations in Hilbert spaces, SIAM J. Math. Anal., 10 (1979), 552-569. doi: 10.1137/0510052.

[11]

M. Bendahmane, P. Wittbold and A. Zimmermann, Renormalized solutions for a nonlinear parabolic equation with variable exponents and $L^1$-data, J. Differential Equations, 249 (2010), 1483-1515. doi: 10.1016/j.jde.2010.05.011.

[12]

T. M. Bokalo and O. M. Buhrii, Doubly nonlinear parabolic equations with variable exponents of nonlinearity, Ukrainian Math. J., 63 (2011), 709-728. doi: 10.1007/s11253-011-0537-5.

[13]

H. Brézis, "Operateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,'' Math Studies, Vol. 5, North-Holland, Amsterdam/New York, 1973.

[14]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406. doi: 10.1137/050624522.

[15]

E. DiBenedetto and R. E. Showalter, Implicit degenerate evolution equations and applications, SIAM J. Math. Anal., 12 (1981), 731-751. doi: 10.1137/0512062.

[16]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, "Lebesgue and Sobolev Spaces with Variable Exponents,'' Lecture Notes in Mathematics, Vol. 2017, Springer-Verlag, Heidelberg, 2011. doi: 10.1007/978-3-642-18363-8.

[17]

X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424-446. doi: 10.1006/jmaa.2000.7617.

[18]

X. Fan, Y. Zhao and D. Zhao, Compact imbedding theorems with symmetry of Strauss-Lions type for the space $W^{1,p(x)}(\Omega)$,( J. Math. Anal. Appl., 255 (2001), 333-348. doi: 10.1006/jmaa.2000.7266.

[19]

Y. Fu and N. Pan, Existence of solutions for nonlinear parabolic problem with $p(x)$-growth, J. Math. Anal. Appl., 362 (2010), 313-326. doi: 10.1016/j.jmaa.2009.08.038.

[20]

O. Grange and F. Mignot, Sur la résolution d'une équation et d'une inéquation paraboliques non linéaires, J. Functional Analysis, 11 (1972), 77-92. doi: 10.1016/0022-1236(72)90080-8.

[21]

P. Harjulehto, P. Hästö, Ú.-V. Lê and M. Nuortio, Overview of differential equations with non-standard growth, Nonlinear Anal., 72 (2010), 4551-4574. doi: 10.1016/j.na.2010.02.033.

[22]

N. Kenmochi, Some nonlinear parabolic variational inequalities, Israel J. Math., 22 (1975), 304-331. doi: 10.1007/BF02761596.

[23]

N. Kenmochi and I. Pawlow, A class of nonlinear elliptic-parabolic equations with time-dependent constraints, Nonlinear Anal., 10 (1986), 1181-1202. doi: 10.1016/0362-546X(86)90058-1.

[24]

K. Kurata and N. Shioji, Compact embedding from $W^{1,2}_0(\Omega)$ to $L^{q(x)}(\Omega)$ and its application to nonlinear elliptic boundary value problem with variable critical exponent, J. Math. Anal. Appl., 339 (2008), 1386-1394. doi: 10.1016/j.jmaa.2007.07.083.

[25]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non-Linéaires,'' Dunod, Paris, 1969.

[26]

J.-L. Lions and E. Magenes, "Non-Homogeneous Boundary Value Problems and Applications I,'' Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972.

[27]

E. Maitre and P. Witomski, A pseudo-monotonicity adapted to doubly nonlinear elliptic-parabolic equations, Nonlinear Anal., 50 (2002), 223-250. doi: 10.1016/S0362-546X(01)00748-9.

[28]

Y. Mizuta, T. Ohno, T. Shimomura and N. Shioji, Compact embeddings for Sobolev spaces of variable exponents and existence of solutions for nonlinear elliptic problems involving the $p(x)$-Laplacian and its critical exponent, Ann. Acad. Sci. Fenn. Math., 35 (2010), 115-130. doi: 10.5186/aasfm.2010.3507.

[29]

J. Musielak, "Orlicz Spaces and Modular Spaces,'' Lecture Notes in Mathematics, Vol. 1034, Springer-Verlag, Berlin, 1983.

[30]

P. A. Raviart, Sur la résolution de certaines équations paraboliques non linéaires, J. Functional Analysis, 5 (1970), 299-328. doi: 10.1016/0022-1236(70)90031-5.

[31]

T. Roubíček, "Nonlinear Partial Differential Equations with Applications,'' International Series of Numerical Mathematics, Vol. 153. Birkhäuser Verlag, Basel, 2005.

[32]

M. Růžička, "Electrorheological Fluids: Modeling and Mathematical Theory,'' Lecture Notes in Mathematics, Vol. 1748, Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0104029.

[33]

J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura. Appl. (4), 146 (1987), 65-96. doi: 10.1007/BF01762360.

[34]

M. Tsutsumi, On solutions of some doubly nonlinear degenerate parabolic equations with absorption, J. Math. Anal. Appl., 132 (1988) 187-212. doi: 10.1016/0022-247X(88)90053-4.

[35]

N. Yamazaki, Doubly nonlinear evolution equations associated with elliptic-parabolic free boundary problems, Discrete and Continuous Dynamical Systems, suppl., (2005), 920-929.

[36]

C. Zhang and S. Zhou, Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and $L^1$ data, J. Differential Equations, 248 (2010), 1376-1400. doi: 10.1016/j.jde.2009.11.024.

[37]

V. V. Zhikov, On the technique for passing to the limit in nonlinear elliptic equations, Functional Analysis and Its Applications, 43 (2009), 96-112. doi: 10.1007/s10688-009-0014-1.

show all references

References:
[1]

E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech. Anal., 156 (2001), 121-140. doi: 10.1007/s002050100117.

[2]

G. Akagi, Doubly nonlinear evolution equations governed by time-dependent subdifferentials in reflexive Banach spaces, J. Differential Equations, 231 (2006), 32-56. doi: 10.1016/j.jde.2006.04.006.

[3]

G. Akagi and K. Matsuura, Nonlinear diffusion equations driven by the $p(\cdot)$-Laplacian, Nonlinear Differential Equations and Applications (NoDEA), 20 (2013), 37-64. doi: 10.1007/s00030-012-0153-6.

[4]

G. Akagi, Energy solutions of the Cauchy-Neumann problem for porous medium equations, Discrete and Continuous Dynamical Systems, Dynamical Systems, Differential Equations and Applications. $7^{th}$th AIMS Conference, suppl., (2009), 1-10.

[5]

H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z., 183 (1983), 311-341. doi: 10.1007/BF01176474.

[6]

S. Antontsev and S. Shmarev, Parabolic equations with double variable nonlinearities, Math. Comput. Simulation, 81 (2011), 2018-2032. doi: 10.1016/j.matcom.2010.12.015.

[7]

S. Antontsev and S. Shmarev, Extinction of solutions of parabolic equations with variable anisotropic nonlinearities, Proc. Steklov Inst. Math., 261 (2008), 11-21. doi: 10.1134/S0081543808020028.

[8]

S. N. Antontsev and S. I. Shmarev, A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions, Nonlinear Anal., 60 (2005), 515-545. doi: 10.1016/j.na.2004.09.026.

[9]

V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces,'' Noordhoff, Leiden, 1976.

[10]

V. Barbu, Existence for nonlinear Volterra equations in Hilbert spaces, SIAM J. Math. Anal., 10 (1979), 552-569. doi: 10.1137/0510052.

[11]

M. Bendahmane, P. Wittbold and A. Zimmermann, Renormalized solutions for a nonlinear parabolic equation with variable exponents and $L^1$-data, J. Differential Equations, 249 (2010), 1483-1515. doi: 10.1016/j.jde.2010.05.011.

[12]

T. M. Bokalo and O. M. Buhrii, Doubly nonlinear parabolic equations with variable exponents of nonlinearity, Ukrainian Math. J., 63 (2011), 709-728. doi: 10.1007/s11253-011-0537-5.

[13]

H. Brézis, "Operateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,'' Math Studies, Vol. 5, North-Holland, Amsterdam/New York, 1973.

[14]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406. doi: 10.1137/050624522.

[15]

E. DiBenedetto and R. E. Showalter, Implicit degenerate evolution equations and applications, SIAM J. Math. Anal., 12 (1981), 731-751. doi: 10.1137/0512062.

[16]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, "Lebesgue and Sobolev Spaces with Variable Exponents,'' Lecture Notes in Mathematics, Vol. 2017, Springer-Verlag, Heidelberg, 2011. doi: 10.1007/978-3-642-18363-8.

[17]

X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424-446. doi: 10.1006/jmaa.2000.7617.

[18]

X. Fan, Y. Zhao and D. Zhao, Compact imbedding theorems with symmetry of Strauss-Lions type for the space $W^{1,p(x)}(\Omega)$,( J. Math. Anal. Appl., 255 (2001), 333-348. doi: 10.1006/jmaa.2000.7266.

[19]

Y. Fu and N. Pan, Existence of solutions for nonlinear parabolic problem with $p(x)$-growth, J. Math. Anal. Appl., 362 (2010), 313-326. doi: 10.1016/j.jmaa.2009.08.038.

[20]

O. Grange and F. Mignot, Sur la résolution d'une équation et d'une inéquation paraboliques non linéaires, J. Functional Analysis, 11 (1972), 77-92. doi: 10.1016/0022-1236(72)90080-8.

[21]

P. Harjulehto, P. Hästö, Ú.-V. Lê and M. Nuortio, Overview of differential equations with non-standard growth, Nonlinear Anal., 72 (2010), 4551-4574. doi: 10.1016/j.na.2010.02.033.

[22]

N. Kenmochi, Some nonlinear parabolic variational inequalities, Israel J. Math., 22 (1975), 304-331. doi: 10.1007/BF02761596.

[23]

N. Kenmochi and I. Pawlow, A class of nonlinear elliptic-parabolic equations with time-dependent constraints, Nonlinear Anal., 10 (1986), 1181-1202. doi: 10.1016/0362-546X(86)90058-1.

[24]

K. Kurata and N. Shioji, Compact embedding from $W^{1,2}_0(\Omega)$ to $L^{q(x)}(\Omega)$ and its application to nonlinear elliptic boundary value problem with variable critical exponent, J. Math. Anal. Appl., 339 (2008), 1386-1394. doi: 10.1016/j.jmaa.2007.07.083.

[25]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non-Linéaires,'' Dunod, Paris, 1969.

[26]

J.-L. Lions and E. Magenes, "Non-Homogeneous Boundary Value Problems and Applications I,'' Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972.

[27]

E. Maitre and P. Witomski, A pseudo-monotonicity adapted to doubly nonlinear elliptic-parabolic equations, Nonlinear Anal., 50 (2002), 223-250. doi: 10.1016/S0362-546X(01)00748-9.

[28]

Y. Mizuta, T. Ohno, T. Shimomura and N. Shioji, Compact embeddings for Sobolev spaces of variable exponents and existence of solutions for nonlinear elliptic problems involving the $p(x)$-Laplacian and its critical exponent, Ann. Acad. Sci. Fenn. Math., 35 (2010), 115-130. doi: 10.5186/aasfm.2010.3507.

[29]

J. Musielak, "Orlicz Spaces and Modular Spaces,'' Lecture Notes in Mathematics, Vol. 1034, Springer-Verlag, Berlin, 1983.

[30]

P. A. Raviart, Sur la résolution de certaines équations paraboliques non linéaires, J. Functional Analysis, 5 (1970), 299-328. doi: 10.1016/0022-1236(70)90031-5.

[31]

T. Roubíček, "Nonlinear Partial Differential Equations with Applications,'' International Series of Numerical Mathematics, Vol. 153. Birkhäuser Verlag, Basel, 2005.

[32]

M. Růžička, "Electrorheological Fluids: Modeling and Mathematical Theory,'' Lecture Notes in Mathematics, Vol. 1748, Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0104029.

[33]

J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura. Appl. (4), 146 (1987), 65-96. doi: 10.1007/BF01762360.

[34]

M. Tsutsumi, On solutions of some doubly nonlinear degenerate parabolic equations with absorption, J. Math. Anal. Appl., 132 (1988) 187-212. doi: 10.1016/0022-247X(88)90053-4.

[35]

N. Yamazaki, Doubly nonlinear evolution equations associated with elliptic-parabolic free boundary problems, Discrete and Continuous Dynamical Systems, suppl., (2005), 920-929.

[36]

C. Zhang and S. Zhou, Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and $L^1$ data, J. Differential Equations, 248 (2010), 1376-1400. doi: 10.1016/j.jde.2009.11.024.

[37]

V. V. Zhikov, On the technique for passing to the limit in nonlinear elliptic equations, Functional Analysis and Its Applications, 43 (2009), 96-112. doi: 10.1007/s10688-009-0014-1.

[1]

Shun Uchida. Solvability of doubly nonlinear parabolic equation with p-laplacian. Evolution Equations and Control Theory, 2022, 11 (3) : 975-1000. doi: 10.3934/eect.2021033

[2]

Goro Akagi, Kei Matsuura. Well-posedness and large-time behaviors of solutions for a parabolic equation involving $p(x)$-Laplacian. Conference Publications, 2011, 2011 (Special) : 22-31. doi: 10.3934/proc.2011.2011.22

[3]

Laurence Cherfils, Stefania Gatti, Alain Miranville. A doubly nonlinear parabolic equation with a singular potential. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 51-66. doi: 10.3934/dcdss.2011.4.51

[4]

Kerstin Does. An evolution equation involving the normalized $P$-Laplacian. Communications on Pure and Applied Analysis, 2011, 10 (1) : 361-396. doi: 10.3934/cpaa.2011.10.361

[5]

Vitali Liskevich, Igor I. Skrypnik, Zeev Sobol. Estimates of solutions for the parabolic $p$-Laplacian equation with measure via parabolic nonlinear potentials. Communications on Pure and Applied Analysis, 2013, 12 (4) : 1731-1744. doi: 10.3934/cpaa.2013.12.1731

[6]

Noriaki Yamazaki. Doubly nonlinear evolution equations associated with elliptic-parabolic free boundary problems. Conference Publications, 2005, 2005 (Special) : 920-929. doi: 10.3934/proc.2005.2005.920

[7]

Pelin G. Geredeli, Azer Khanmamedov. Long-time dynamics of the parabolic $p$-Laplacian equation. Communications on Pure and Applied Analysis, 2013, 12 (2) : 735-754. doi: 10.3934/cpaa.2013.12.735

[8]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations and Control Theory, 2022, 11 (2) : 399-414. doi: 10.3934/eect.2021005

[9]

Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure and Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012

[10]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[11]

Ángel Arroyo, Joonas Heino, Mikko Parviainen. Tug-of-war games with varying probabilities and the normalized p(x)-laplacian. Communications on Pure and Applied Analysis, 2017, 16 (3) : 915-944. doi: 10.3934/cpaa.2017044

[12]

Chao Zhang, Xia Zhang, Shulin Zhou. Gradient estimates for the strong $p(x)$-Laplace equation. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4109-4129. doi: 10.3934/dcds.2017175

[13]

Zhong Tan, Zheng-An Yao. The existence and asymptotic behavior of the evolution p-Laplacian equations with strong nonlinear sources. Communications on Pure and Applied Analysis, 2004, 3 (3) : 475-490. doi: 10.3934/cpaa.2004.3.475

[14]

Masahiro Ikeda, Takahisa Inui, Mamoru Okamoto, Yuta Wakasugi. $ L^p $-$ L^q $ estimates for the damped wave equation and the critical exponent for the nonlinear problem with slowly decaying data. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1967-2008. doi: 10.3934/cpaa.2019090

[15]

Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058

[16]

Michinori Ishiwata. Existence of a stable set for some nonlinear parabolic equation involving critical Sobolev exponent. Conference Publications, 2005, 2005 (Special) : 443-452. doi: 10.3934/proc.2005.2005.443

[17]

Antonio Segatti. Global attractor for a class of doubly nonlinear abstract evolution equations. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 801-820. doi: 10.3934/dcds.2006.14.801

[18]

Gabriele Bonanno, Giuseppina D'Aguì, Angela Sciammetta. One-dimensional nonlinear boundary value problems with variable exponent. Discrete and Continuous Dynamical Systems - S, 2018, 11 (2) : 179-191. doi: 10.3934/dcdss.2018011

[19]

Huiling Li, Xiaoliu Wang, Xueyan Lu. A nonlinear Stefan problem with variable exponent and different moving parameters. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1671-1698. doi: 10.3934/dcdsb.2019246

[20]

Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (105)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]