October  2014, 7(5): 1025-1043. doi: 10.3934/dcdss.2014.7.1025

Existence and decay of solutions of the 2D QG equation in the presence of an obstacle

1. 

Department of Mathematics, UC Riverside, 900 University Ave, Riverside, CA 92521, United States

2. 

Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL 33431

Received  March 2013 Published  May 2014

We continue the study initiated in [16] of dissipative differential equations governing fluid motion in the presence of an obstacle, in which the dissipative term is given by the Laplacian, or a fractional power of the Laplacian. Our main tools are the Ikebe-Ramm transform, and the localized version of the fractional Laplacian due to Caffarelli and Silvestre [5] as improved by Stinga and Torrea [21]. We give applications to the problem of existence of weak solutions of the two dimensional dissipative quasi-geostrophic equation and the decay of these solutions in the $L^2$-norm.
Citation: Leonardo Kosloff, Tomas Schonbek. Existence and decay of solutions of the 2D QG equation in the presence of an obstacle. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1025-1043. doi: 10.3934/dcdss.2014.7.1025
References:
[1]

W. Borchers and T. Miyakawa, Algebraic $L^2$ decay for Navier-Stokes flows in exterior domains,, Acta Math., 165 (1990), 189.  doi: 10.1007/BF02391905.  Google Scholar

[2]

W. Borchers and T. Miyakawa, On stability of exterior stationary Navier-Stokes flows,, Acta Math., 174 (1995), 311.  doi: 10.1007/BF02392469.  Google Scholar

[3]

W. Borchers and H. Sohr, On the semigroup of the Stokes operator for exterior domains in $L^q$ spaces,, Math. Z., 196 (1987), 415.  doi: 10.1007/BF01200362.  Google Scholar

[4]

J. Bergh and J. Löfström, Interpolation Spaces,, Springer Verlag, (1976).   Google Scholar

[5]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. P.D.E., 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[6]

J. A. Carrillo and L. C. F. Ferreira, The asymptotic behavior of subcritical dissipative quasi-geostrophic equations,, Nonlinearity, 21 (2008), 1001.  doi: 10.1088/0951-7715/21/5/006.  Google Scholar

[7]

M. Cannone, Ondelettes, Paraproduits et Navier-Stokes,, Diderot Editeur, (1995).   Google Scholar

[8]

S. Chandler-Wilde and P. Monk, Wave-number-explicit bounds in time harmonic scattering,, SIAM J. Math. Analysis, 39 (2008), 1428.  doi: 10.1137/060662575.  Google Scholar

[9]

P. Constantin and J. Wu, Behavior of solutions of 2D quasi-geostrophic equations,, SIAM J. Math. Analysis, 30 (1999), 937.  doi: 10.1137/S0036141098337333.  Google Scholar

[10]

A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations,, Comm. Math. Physics, 249 (2004), 511.  doi: 10.1007/s00220-004-1055-1.  Google Scholar

[11]

Y. Giga, Analyticity of the semigroup generated by the Stokes operator in $L_r$ spaces,, Math. Z., 178 (1981), 251.  doi: 10.1007/BF01214869.  Google Scholar

[12]

Y. Giga, Domains of fractional powers of the Stokes operator in $L_r$ spaces,, Arch. Rational Mech. Anal., 89 (1985), 25.  doi: 10.1007/BF00276874.  Google Scholar

[13]

Y. Giga and H. Sohr, On the Stokes operator in exterior domains,, J. Fac. Sci. Univ. Tokyo, 36 (1989), 103.   Google Scholar

[14]

P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Pitman Publishing Inc., (1985).   Google Scholar

[15]

T. Ikebe, Eigenfunction expansions associated with the Schrödinger operator and their applications to scattering theory,, Arch. Rational Mech. Anal., 5 (1960), 1.  doi: 10.1007/BF00252896.  Google Scholar

[16]

L. Kosloff and T. Schonbek, On the Laplacian and fractional Laplacian in an exterior domain,, Adv. Diff. Eq., 17 (2012), 173.   Google Scholar

[17]

T. Miyakawa, On nonstationary solutions of the Navier-Stokes equations in an exterior domain,, Hiroshima Math. J., 12 (1982), 115.   Google Scholar

[18]

A. G. Ramm, Scattering by Obstacles,, D. Reidel Publishing Co., (1986).  doi: 10.1007/978-94-009-4544-9.  Google Scholar

[19]

M. E. Schonbek, The Fourier splitting method,, in Advances in Geometric Analysis and Continuum Mechanics, (1995), 269.   Google Scholar

[20]

M. E. Schonbek and T. Schonbek, Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows,, Discrete Contin. Dyn. Syst., 13 (2005), 1277.  doi: 10.3934/dcds.2005.13.1277.  Google Scholar

[21]

P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators,, Comm. P.D.E., 35 (2010), 2092.  doi: 10.1080/03605301003735680.  Google Scholar

[22]

M. E. Taylor, Partial Differential Equations,, Vol 1., (1996).  doi: 10.1007/978-1-4684-9320-7.  Google Scholar

[23]

R. Temam, Navier Stokes Equations, Theory and Numerical Analysis,, Studies in Mathematics and its Applications, (1984).   Google Scholar

show all references

References:
[1]

W. Borchers and T. Miyakawa, Algebraic $L^2$ decay for Navier-Stokes flows in exterior domains,, Acta Math., 165 (1990), 189.  doi: 10.1007/BF02391905.  Google Scholar

[2]

W. Borchers and T. Miyakawa, On stability of exterior stationary Navier-Stokes flows,, Acta Math., 174 (1995), 311.  doi: 10.1007/BF02392469.  Google Scholar

[3]

W. Borchers and H. Sohr, On the semigroup of the Stokes operator for exterior domains in $L^q$ spaces,, Math. Z., 196 (1987), 415.  doi: 10.1007/BF01200362.  Google Scholar

[4]

J. Bergh and J. Löfström, Interpolation Spaces,, Springer Verlag, (1976).   Google Scholar

[5]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. P.D.E., 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[6]

J. A. Carrillo and L. C. F. Ferreira, The asymptotic behavior of subcritical dissipative quasi-geostrophic equations,, Nonlinearity, 21 (2008), 1001.  doi: 10.1088/0951-7715/21/5/006.  Google Scholar

[7]

M. Cannone, Ondelettes, Paraproduits et Navier-Stokes,, Diderot Editeur, (1995).   Google Scholar

[8]

S. Chandler-Wilde and P. Monk, Wave-number-explicit bounds in time harmonic scattering,, SIAM J. Math. Analysis, 39 (2008), 1428.  doi: 10.1137/060662575.  Google Scholar

[9]

P. Constantin and J. Wu, Behavior of solutions of 2D quasi-geostrophic equations,, SIAM J. Math. Analysis, 30 (1999), 937.  doi: 10.1137/S0036141098337333.  Google Scholar

[10]

A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations,, Comm. Math. Physics, 249 (2004), 511.  doi: 10.1007/s00220-004-1055-1.  Google Scholar

[11]

Y. Giga, Analyticity of the semigroup generated by the Stokes operator in $L_r$ spaces,, Math. Z., 178 (1981), 251.  doi: 10.1007/BF01214869.  Google Scholar

[12]

Y. Giga, Domains of fractional powers of the Stokes operator in $L_r$ spaces,, Arch. Rational Mech. Anal., 89 (1985), 25.  doi: 10.1007/BF00276874.  Google Scholar

[13]

Y. Giga and H. Sohr, On the Stokes operator in exterior domains,, J. Fac. Sci. Univ. Tokyo, 36 (1989), 103.   Google Scholar

[14]

P. Grisvard, Elliptic Problems in Nonsmooth Domains,, Pitman Publishing Inc., (1985).   Google Scholar

[15]

T. Ikebe, Eigenfunction expansions associated with the Schrödinger operator and their applications to scattering theory,, Arch. Rational Mech. Anal., 5 (1960), 1.  doi: 10.1007/BF00252896.  Google Scholar

[16]

L. Kosloff and T. Schonbek, On the Laplacian and fractional Laplacian in an exterior domain,, Adv. Diff. Eq., 17 (2012), 173.   Google Scholar

[17]

T. Miyakawa, On nonstationary solutions of the Navier-Stokes equations in an exterior domain,, Hiroshima Math. J., 12 (1982), 115.   Google Scholar

[18]

A. G. Ramm, Scattering by Obstacles,, D. Reidel Publishing Co., (1986).  doi: 10.1007/978-94-009-4544-9.  Google Scholar

[19]

M. E. Schonbek, The Fourier splitting method,, in Advances in Geometric Analysis and Continuum Mechanics, (1995), 269.   Google Scholar

[20]

M. E. Schonbek and T. Schonbek, Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows,, Discrete Contin. Dyn. Syst., 13 (2005), 1277.  doi: 10.3934/dcds.2005.13.1277.  Google Scholar

[21]

P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators,, Comm. P.D.E., 35 (2010), 2092.  doi: 10.1080/03605301003735680.  Google Scholar

[22]

M. E. Taylor, Partial Differential Equations,, Vol 1., (1996).  doi: 10.1007/978-1-4684-9320-7.  Google Scholar

[23]

R. Temam, Navier Stokes Equations, Theory and Numerical Analysis,, Studies in Mathematics and its Applications, (1984).   Google Scholar

[1]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[2]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[3]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[4]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[5]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[6]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[7]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[8]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[9]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[10]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[11]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[12]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (23)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]