-
Previous Article
A nonlinear effective slip interface law for transport phenomena between a fracture flow and a porous medium
- DCDS-S Home
- This Issue
-
Next Article
Existence and decay of solutions of the 2D QG equation in the presence of an obstacle
Stokes and Navier-Stokes equations with perfect slip on wedge type domains
1. | Heinrich-Heine-Universität Düsseldorf, Mathematisches Institut, 40204 Düsseldorf, Germany, Germany |
References:
[1] |
W. Borchers and T. Miyakawa, $L^2$ decay for the Navier-Stokes flow in halfspaces,, Math. Ann., 282 (1988), 139.
doi: 10.1007/BF01457017. |
[2] |
G. Da Prato and P. Grisvard, Sommes d'oprateurs linaires et quations diffrentielles oprationelles,, J. Math. Pures Appl., 54 (1975), 305.
|
[3] |
R. Denk, M. Hieber and J. Prüss, $\mathcalR$-boundedness, Fourier multipliers and problems of elliptic and parabolic type,, Mem. Am. Math. Soc., 166 (2003).
doi: 10.1090/memo/0788. |
[4] |
R. Denk and M. Geißert, J. Saal and O. Sawada, The spin-coating process: Analysis of the free boundary value problem,, Commun. Partial Differ. Equations, 36 (2011), 1145.
doi: 10.1080/03605302.2010.546469. |
[5] |
G. Dore and A. Venni, On the closedness of the sum of two operators,, Math. Z., 196 (1987), 189.
doi: 10.1007/BF01163654. |
[6] |
A. Friedman, Partial Differential Equations,, Holt, (1969).
|
[7] |
A. Friedman and J. L. Velázquez, Time-dependent coating flows in a strip. I: The linearized problem,, Trans. Am. Math. Soc., 349 (1997), 2981.
doi: 10.1090/S0002-9947-97-01956-9. |
[8] |
G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems,, Springer Monographs in Mathematics, (2011).
doi: 10.1007/978-0-387-09620-9. |
[9] |
Y. Giga, Solutions for semilinear parabolic equations in $L_p$ and regularity of weak solutions of the Navier-Stokes system,, Journal of Differential Equations, 62 (1986), 186.
doi: 10.1016/0022-0396(86)90096-3. |
[10] |
M. Haase, The Functional Calculus for Sectorial Operators,, Operator Theory: Advances and Applications, (2006).
doi: 10.1007/3-7643-7698-8. |
[11] |
P. W. Jones, Quasiconformal mappings and extendability of functions in Sobolev Spaces,, Acta Math., 147 (1981), 71.
doi: 10.1007/BF02392869. |
[12] |
N. Kalton and L. Weis, The $H^\infty$-calculus and sums of closed operators,, Math. Ann., 321 (2001), 319.
doi: 10.1007/s002080100231. |
[13] |
P. Kunstmann and L. Weis, Maximal $L_p$-regularity for parabolic equations, Fourier multiplier theorems and $H^\infty$-functional calculus,, in Functional analytic methods for evolution equations, (1855), 65.
doi: 10.1007/978-3-540-44653-8_2. |
[14] |
R. Labbas and B. Terreni, Somme d'opérateurs linéaires de type parabolique,, Boll. Un. Mat. Ital., 7 (1987), 545.
|
[15] |
V. N. Maslennikova and M. E. Bogovski, Elliptic boundary value problems in unbounded domains with noncompact and nonsmooth boundaries,, Rendiconti del Seminario Matematico e Fisico di Milano, 56 (1986), 125.
doi: 10.1007/BF02925141. |
[16] |
M. Mitrea and S. Monniaux, On the analyticity of the semigroup generated by the Stokes operator with Neumann-type boundary conditions on Lipschitz subdomains of Riemannian manifolds,, Transactions of the American Mathematical Society, 361 (2009), 3125.
doi: 10.1090/S0002-9947-08-04827-7. |
[17] |
M. Mitrea and S. Monniaux, The nonlinear Hodge-Navier-Stokes equations in Lipschitz domains,, Differential and Integral Equations, 22 (2009), 339.
|
[18] |
T. Nau and J. Saal, H-infinity-calculus for cylindrical boundary value problems,, Advances in Differential Equations, 17 (2012), 767.
|
[19] |
A. I. Nazarov, $L_p$-estimates for a solution to the Dirichlet problem and to the Neumann problem for the heat equation in a wedge with edge of arbitrary codimension,, J. Math. Sci., 106 (2001), 2989.
doi: 10.1023/A:1011319521775. |
[20] |
A. Noll and J. Saal, $H^\infty$-calculus for the Stokes operator on Lq-spaces,, Math. Z., 244 (2003), 651.
|
[21] |
J. Prüss, Evolutionary Integral Equations and Applications,, Monographs in Mathematics, (1993).
doi: 10.1007/978-3-0348-8570-6. |
[22] |
J. Prüss and S. Shimizu and Y. Shibata and G. Simonett, On well-posedness of incompressible two-phase flows with phase transitions: The case of equal densities,, Evolution Equations and Control Theory, 1 (2012), 171.
doi: 10.3934/eect.2012.1.171. |
[23] |
J. Prüss and G. Simonett, $H^{\infty}$-calculus for the sum of non-commuting operators,, Trans. Amer. Math. Soc., 359 (2007), 3549.
doi: 10.1090/S0002-9947-07-04291-2. |
[24] |
J. Saal, Robin Boundary Conditions and Bounded $H^\infty$-Calculus for the Stokes Operator,, Logos-Verlag, (2003). Google Scholar |
[25] |
J. Saal, Stokes and Navier-Stokes equations with Robin boundary conditions in a half-space,, J. Math. Fluid Mech., 8 (2006), 211.
doi: 10.1007/s00021-004-0143-5. |
[26] |
B. Schweizer, A well-posed model for dynamic contact angles,, Nonlinear Anal. Theory Methods Appl., 43 (2001), 109.
doi: 10.1016/S0362-546X(99)00183-2. |
[27] |
V. A. Solonnikov, On some free boundary problems for the Navier-Stokes equations with moving contact points and lines,, Math. Ann., 302 (1995), 743.
doi: 10.1007/BF01444515. |
show all references
References:
[1] |
W. Borchers and T. Miyakawa, $L^2$ decay for the Navier-Stokes flow in halfspaces,, Math. Ann., 282 (1988), 139.
doi: 10.1007/BF01457017. |
[2] |
G. Da Prato and P. Grisvard, Sommes d'oprateurs linaires et quations diffrentielles oprationelles,, J. Math. Pures Appl., 54 (1975), 305.
|
[3] |
R. Denk, M. Hieber and J. Prüss, $\mathcalR$-boundedness, Fourier multipliers and problems of elliptic and parabolic type,, Mem. Am. Math. Soc., 166 (2003).
doi: 10.1090/memo/0788. |
[4] |
R. Denk and M. Geißert, J. Saal and O. Sawada, The spin-coating process: Analysis of the free boundary value problem,, Commun. Partial Differ. Equations, 36 (2011), 1145.
doi: 10.1080/03605302.2010.546469. |
[5] |
G. Dore and A. Venni, On the closedness of the sum of two operators,, Math. Z., 196 (1987), 189.
doi: 10.1007/BF01163654. |
[6] |
A. Friedman, Partial Differential Equations,, Holt, (1969).
|
[7] |
A. Friedman and J. L. Velázquez, Time-dependent coating flows in a strip. I: The linearized problem,, Trans. Am. Math. Soc., 349 (1997), 2981.
doi: 10.1090/S0002-9947-97-01956-9. |
[8] |
G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems,, Springer Monographs in Mathematics, (2011).
doi: 10.1007/978-0-387-09620-9. |
[9] |
Y. Giga, Solutions for semilinear parabolic equations in $L_p$ and regularity of weak solutions of the Navier-Stokes system,, Journal of Differential Equations, 62 (1986), 186.
doi: 10.1016/0022-0396(86)90096-3. |
[10] |
M. Haase, The Functional Calculus for Sectorial Operators,, Operator Theory: Advances and Applications, (2006).
doi: 10.1007/3-7643-7698-8. |
[11] |
P. W. Jones, Quasiconformal mappings and extendability of functions in Sobolev Spaces,, Acta Math., 147 (1981), 71.
doi: 10.1007/BF02392869. |
[12] |
N. Kalton and L. Weis, The $H^\infty$-calculus and sums of closed operators,, Math. Ann., 321 (2001), 319.
doi: 10.1007/s002080100231. |
[13] |
P. Kunstmann and L. Weis, Maximal $L_p$-regularity for parabolic equations, Fourier multiplier theorems and $H^\infty$-functional calculus,, in Functional analytic methods for evolution equations, (1855), 65.
doi: 10.1007/978-3-540-44653-8_2. |
[14] |
R. Labbas and B. Terreni, Somme d'opérateurs linéaires de type parabolique,, Boll. Un. Mat. Ital., 7 (1987), 545.
|
[15] |
V. N. Maslennikova and M. E. Bogovski, Elliptic boundary value problems in unbounded domains with noncompact and nonsmooth boundaries,, Rendiconti del Seminario Matematico e Fisico di Milano, 56 (1986), 125.
doi: 10.1007/BF02925141. |
[16] |
M. Mitrea and S. Monniaux, On the analyticity of the semigroup generated by the Stokes operator with Neumann-type boundary conditions on Lipschitz subdomains of Riemannian manifolds,, Transactions of the American Mathematical Society, 361 (2009), 3125.
doi: 10.1090/S0002-9947-08-04827-7. |
[17] |
M. Mitrea and S. Monniaux, The nonlinear Hodge-Navier-Stokes equations in Lipschitz domains,, Differential and Integral Equations, 22 (2009), 339.
|
[18] |
T. Nau and J. Saal, H-infinity-calculus for cylindrical boundary value problems,, Advances in Differential Equations, 17 (2012), 767.
|
[19] |
A. I. Nazarov, $L_p$-estimates for a solution to the Dirichlet problem and to the Neumann problem for the heat equation in a wedge with edge of arbitrary codimension,, J. Math. Sci., 106 (2001), 2989.
doi: 10.1023/A:1011319521775. |
[20] |
A. Noll and J. Saal, $H^\infty$-calculus for the Stokes operator on Lq-spaces,, Math. Z., 244 (2003), 651.
|
[21] |
J. Prüss, Evolutionary Integral Equations and Applications,, Monographs in Mathematics, (1993).
doi: 10.1007/978-3-0348-8570-6. |
[22] |
J. Prüss and S. Shimizu and Y. Shibata and G. Simonett, On well-posedness of incompressible two-phase flows with phase transitions: The case of equal densities,, Evolution Equations and Control Theory, 1 (2012), 171.
doi: 10.3934/eect.2012.1.171. |
[23] |
J. Prüss and G. Simonett, $H^{\infty}$-calculus for the sum of non-commuting operators,, Trans. Amer. Math. Soc., 359 (2007), 3549.
doi: 10.1090/S0002-9947-07-04291-2. |
[24] |
J. Saal, Robin Boundary Conditions and Bounded $H^\infty$-Calculus for the Stokes Operator,, Logos-Verlag, (2003). Google Scholar |
[25] |
J. Saal, Stokes and Navier-Stokes equations with Robin boundary conditions in a half-space,, J. Math. Fluid Mech., 8 (2006), 211.
doi: 10.1007/s00021-004-0143-5. |
[26] |
B. Schweizer, A well-posed model for dynamic contact angles,, Nonlinear Anal. Theory Methods Appl., 43 (2001), 109.
doi: 10.1016/S0362-546X(99)00183-2. |
[27] |
V. A. Solonnikov, On some free boundary problems for the Navier-Stokes equations with moving contact points and lines,, Math. Ann., 302 (1995), 743.
doi: 10.1007/BF01444515. |
[1] |
Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020408 |
[2] |
Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020440 |
[3] |
Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241 |
[4] |
Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021002 |
[5] |
Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001 |
[6] |
Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242 |
[7] |
Sergio Conti, Georg Dolzmann. Optimal laminates in single-slip elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 1-16. doi: 10.3934/dcdss.2020302 |
[8] |
Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115 |
[9] |
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020348 |
[10] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[11] |
Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039 |
[12] |
Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141 |
[13] |
Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142 |
[14] |
Guo-Niu Han, Huan Xiong. Skew doubled shifted plane partitions: Calculus and asymptotics. Electronic Research Archive, 2021, 29 (1) : 1841-1857. doi: 10.3934/era.2020094 |
[15] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[16] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[17] |
Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang. Approximation methods for the distributed order calculus using the convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1447-1468. doi: 10.3934/dcdsb.2020168 |
[18] |
Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062 |
[19] |
Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268 |
[20] |
Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]