• Previous Article
    A nonlinear effective slip interface law for transport phenomena between a fracture flow and a porous medium
  • DCDS-S Home
  • This Issue
  • Next Article
    Existence and decay of solutions of the 2D QG equation in the presence of an obstacle
October  2014, 7(5): 1045-1063. doi: 10.3934/dcdss.2014.7.1045

Stokes and Navier-Stokes equations with perfect slip on wedge type domains

1. 

Heinrich-Heine-Universität Düsseldorf, Mathematisches Institut, 40204 Düsseldorf, Germany, Germany

Received  March 2013 Revised  June 2013 Published  May 2014

Well-posedness of the Stokes and Navier-Stokes equations subject to perfect slip boundary conditions on wedge type domains is studied. Applying the operator sum method we derive an $\mathcal{H}^\infty$-calculus for the Stokes operator in weighted $L^p_\gamma$ spaces (Kondrat'ev spaces) which yields maximal regularity for the linear Stokes system. This in turn implies mild well-posedness for the Navier-Stokes equations, locally-in-time for arbitrary and globally-in-time for small data in $L^p$.
Citation: Siegfried Maier, Jürgen Saal. Stokes and Navier-Stokes equations with perfect slip on wedge type domains. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1045-1063. doi: 10.3934/dcdss.2014.7.1045
References:
[1]

W. Borchers and T. Miyakawa, $L^2$ decay for the Navier-Stokes flow in halfspaces,, Math. Ann., 282 (1988), 139.  doi: 10.1007/BF01457017.  Google Scholar

[2]

G. Da Prato and P. Grisvard, Sommes d'oprateurs linaires et quations diffrentielles oprationelles,, J. Math. Pures Appl., 54 (1975), 305.   Google Scholar

[3]

R. Denk, M. Hieber and J. Prüss, $\mathcalR$-boundedness, Fourier multipliers and problems of elliptic and parabolic type,, Mem. Am. Math. Soc., 166 (2003).  doi: 10.1090/memo/0788.  Google Scholar

[4]

R. Denk and M. Geißert, J. Saal and O. Sawada, The spin-coating process: Analysis of the free boundary value problem,, Commun. Partial Differ. Equations, 36 (2011), 1145.  doi: 10.1080/03605302.2010.546469.  Google Scholar

[5]

G. Dore and A. Venni, On the closedness of the sum of two operators,, Math. Z., 196 (1987), 189.  doi: 10.1007/BF01163654.  Google Scholar

[6]

A. Friedman, Partial Differential Equations,, Holt, (1969).   Google Scholar

[7]

A. Friedman and J. L. Velázquez, Time-dependent coating flows in a strip. I: The linearized problem,, Trans. Am. Math. Soc., 349 (1997), 2981.  doi: 10.1090/S0002-9947-97-01956-9.  Google Scholar

[8]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems,, Springer Monographs in Mathematics, (2011).  doi: 10.1007/978-0-387-09620-9.  Google Scholar

[9]

Y. Giga, Solutions for semilinear parabolic equations in $L_p$ and regularity of weak solutions of the Navier-Stokes system,, Journal of Differential Equations, 62 (1986), 186.  doi: 10.1016/0022-0396(86)90096-3.  Google Scholar

[10]

M. Haase, The Functional Calculus for Sectorial Operators,, Operator Theory: Advances and Applications, (2006).  doi: 10.1007/3-7643-7698-8.  Google Scholar

[11]

P. W. Jones, Quasiconformal mappings and extendability of functions in Sobolev Spaces,, Acta Math., 147 (1981), 71.  doi: 10.1007/BF02392869.  Google Scholar

[12]

N. Kalton and L. Weis, The $H^\infty$-calculus and sums of closed operators,, Math. Ann., 321 (2001), 319.  doi: 10.1007/s002080100231.  Google Scholar

[13]

P. Kunstmann and L. Weis, Maximal $L_p$-regularity for parabolic equations, Fourier multiplier theorems and $H^\infty$-functional calculus,, in Functional analytic methods for evolution equations, (1855), 65.  doi: 10.1007/978-3-540-44653-8_2.  Google Scholar

[14]

R. Labbas and B. Terreni, Somme d'opérateurs linéaires de type parabolique,, Boll. Un. Mat. Ital., 7 (1987), 545.   Google Scholar

[15]

V. N. Maslennikova and M. E. Bogovski, Elliptic boundary value problems in unbounded domains with noncompact and nonsmooth boundaries,, Rendiconti del Seminario Matematico e Fisico di Milano, 56 (1986), 125.  doi: 10.1007/BF02925141.  Google Scholar

[16]

M. Mitrea and S. Monniaux, On the analyticity of the semigroup generated by the Stokes operator with Neumann-type boundary conditions on Lipschitz subdomains of Riemannian manifolds,, Transactions of the American Mathematical Society, 361 (2009), 3125.  doi: 10.1090/S0002-9947-08-04827-7.  Google Scholar

[17]

M. Mitrea and S. Monniaux, The nonlinear Hodge-Navier-Stokes equations in Lipschitz domains,, Differential and Integral Equations, 22 (2009), 339.   Google Scholar

[18]

T. Nau and J. Saal, H-infinity-calculus for cylindrical boundary value problems,, Advances in Differential Equations, 17 (2012), 767.   Google Scholar

[19]

A. I. Nazarov, $L_p$-estimates for a solution to the Dirichlet problem and to the Neumann problem for the heat equation in a wedge with edge of arbitrary codimension,, J. Math. Sci., 106 (2001), 2989.  doi: 10.1023/A:1011319521775.  Google Scholar

[20]

A. Noll and J. Saal, $H^\infty$-calculus for the Stokes operator on Lq-spaces,, Math. Z., 244 (2003), 651.   Google Scholar

[21]

J. Prüss, Evolutionary Integral Equations and Applications,, Monographs in Mathematics, (1993).  doi: 10.1007/978-3-0348-8570-6.  Google Scholar

[22]

J. Prüss and S. Shimizu and Y. Shibata and G. Simonett, On well-posedness of incompressible two-phase flows with phase transitions: The case of equal densities,, Evolution Equations and Control Theory, 1 (2012), 171.  doi: 10.3934/eect.2012.1.171.  Google Scholar

[23]

J. Prüss and G. Simonett, $H^{\infty}$-calculus for the sum of non-commuting operators,, Trans. Amer. Math. Soc., 359 (2007), 3549.  doi: 10.1090/S0002-9947-07-04291-2.  Google Scholar

[24]

J. Saal, Robin Boundary Conditions and Bounded $H^\infty$-Calculus for the Stokes Operator,, Logos-Verlag, (2003).   Google Scholar

[25]

J. Saal, Stokes and Navier-Stokes equations with Robin boundary conditions in a half-space,, J. Math. Fluid Mech., 8 (2006), 211.  doi: 10.1007/s00021-004-0143-5.  Google Scholar

[26]

B. Schweizer, A well-posed model for dynamic contact angles,, Nonlinear Anal. Theory Methods Appl., 43 (2001), 109.  doi: 10.1016/S0362-546X(99)00183-2.  Google Scholar

[27]

V. A. Solonnikov, On some free boundary problems for the Navier-Stokes equations with moving contact points and lines,, Math. Ann., 302 (1995), 743.  doi: 10.1007/BF01444515.  Google Scholar

show all references

References:
[1]

W. Borchers and T. Miyakawa, $L^2$ decay for the Navier-Stokes flow in halfspaces,, Math. Ann., 282 (1988), 139.  doi: 10.1007/BF01457017.  Google Scholar

[2]

G. Da Prato and P. Grisvard, Sommes d'oprateurs linaires et quations diffrentielles oprationelles,, J. Math. Pures Appl., 54 (1975), 305.   Google Scholar

[3]

R. Denk, M. Hieber and J. Prüss, $\mathcalR$-boundedness, Fourier multipliers and problems of elliptic and parabolic type,, Mem. Am. Math. Soc., 166 (2003).  doi: 10.1090/memo/0788.  Google Scholar

[4]

R. Denk and M. Geißert, J. Saal and O. Sawada, The spin-coating process: Analysis of the free boundary value problem,, Commun. Partial Differ. Equations, 36 (2011), 1145.  doi: 10.1080/03605302.2010.546469.  Google Scholar

[5]

G. Dore and A. Venni, On the closedness of the sum of two operators,, Math. Z., 196 (1987), 189.  doi: 10.1007/BF01163654.  Google Scholar

[6]

A. Friedman, Partial Differential Equations,, Holt, (1969).   Google Scholar

[7]

A. Friedman and J. L. Velázquez, Time-dependent coating flows in a strip. I: The linearized problem,, Trans. Am. Math. Soc., 349 (1997), 2981.  doi: 10.1090/S0002-9947-97-01956-9.  Google Scholar

[8]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems,, Springer Monographs in Mathematics, (2011).  doi: 10.1007/978-0-387-09620-9.  Google Scholar

[9]

Y. Giga, Solutions for semilinear parabolic equations in $L_p$ and regularity of weak solutions of the Navier-Stokes system,, Journal of Differential Equations, 62 (1986), 186.  doi: 10.1016/0022-0396(86)90096-3.  Google Scholar

[10]

M. Haase, The Functional Calculus for Sectorial Operators,, Operator Theory: Advances and Applications, (2006).  doi: 10.1007/3-7643-7698-8.  Google Scholar

[11]

P. W. Jones, Quasiconformal mappings and extendability of functions in Sobolev Spaces,, Acta Math., 147 (1981), 71.  doi: 10.1007/BF02392869.  Google Scholar

[12]

N. Kalton and L. Weis, The $H^\infty$-calculus and sums of closed operators,, Math. Ann., 321 (2001), 319.  doi: 10.1007/s002080100231.  Google Scholar

[13]

P. Kunstmann and L. Weis, Maximal $L_p$-regularity for parabolic equations, Fourier multiplier theorems and $H^\infty$-functional calculus,, in Functional analytic methods for evolution equations, (1855), 65.  doi: 10.1007/978-3-540-44653-8_2.  Google Scholar

[14]

R. Labbas and B. Terreni, Somme d'opérateurs linéaires de type parabolique,, Boll. Un. Mat. Ital., 7 (1987), 545.   Google Scholar

[15]

V. N. Maslennikova and M. E. Bogovski, Elliptic boundary value problems in unbounded domains with noncompact and nonsmooth boundaries,, Rendiconti del Seminario Matematico e Fisico di Milano, 56 (1986), 125.  doi: 10.1007/BF02925141.  Google Scholar

[16]

M. Mitrea and S. Monniaux, On the analyticity of the semigroup generated by the Stokes operator with Neumann-type boundary conditions on Lipschitz subdomains of Riemannian manifolds,, Transactions of the American Mathematical Society, 361 (2009), 3125.  doi: 10.1090/S0002-9947-08-04827-7.  Google Scholar

[17]

M. Mitrea and S. Monniaux, The nonlinear Hodge-Navier-Stokes equations in Lipschitz domains,, Differential and Integral Equations, 22 (2009), 339.   Google Scholar

[18]

T. Nau and J. Saal, H-infinity-calculus for cylindrical boundary value problems,, Advances in Differential Equations, 17 (2012), 767.   Google Scholar

[19]

A. I. Nazarov, $L_p$-estimates for a solution to the Dirichlet problem and to the Neumann problem for the heat equation in a wedge with edge of arbitrary codimension,, J. Math. Sci., 106 (2001), 2989.  doi: 10.1023/A:1011319521775.  Google Scholar

[20]

A. Noll and J. Saal, $H^\infty$-calculus for the Stokes operator on Lq-spaces,, Math. Z., 244 (2003), 651.   Google Scholar

[21]

J. Prüss, Evolutionary Integral Equations and Applications,, Monographs in Mathematics, (1993).  doi: 10.1007/978-3-0348-8570-6.  Google Scholar

[22]

J. Prüss and S. Shimizu and Y. Shibata and G. Simonett, On well-posedness of incompressible two-phase flows with phase transitions: The case of equal densities,, Evolution Equations and Control Theory, 1 (2012), 171.  doi: 10.3934/eect.2012.1.171.  Google Scholar

[23]

J. Prüss and G. Simonett, $H^{\infty}$-calculus for the sum of non-commuting operators,, Trans. Amer. Math. Soc., 359 (2007), 3549.  doi: 10.1090/S0002-9947-07-04291-2.  Google Scholar

[24]

J. Saal, Robin Boundary Conditions and Bounded $H^\infty$-Calculus for the Stokes Operator,, Logos-Verlag, (2003).   Google Scholar

[25]

J. Saal, Stokes and Navier-Stokes equations with Robin boundary conditions in a half-space,, J. Math. Fluid Mech., 8 (2006), 211.  doi: 10.1007/s00021-004-0143-5.  Google Scholar

[26]

B. Schweizer, A well-posed model for dynamic contact angles,, Nonlinear Anal. Theory Methods Appl., 43 (2001), 109.  doi: 10.1016/S0362-546X(99)00183-2.  Google Scholar

[27]

V. A. Solonnikov, On some free boundary problems for the Navier-Stokes equations with moving contact points and lines,, Math. Ann., 302 (1995), 743.  doi: 10.1007/BF01444515.  Google Scholar

[1]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[2]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[3]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[4]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

[5]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[6]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[7]

Sergio Conti, Georg Dolzmann. Optimal laminates in single-slip elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 1-16. doi: 10.3934/dcdss.2020302

[8]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[9]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[10]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[11]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[12]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[13]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[14]

Guo-Niu Han, Huan Xiong. Skew doubled shifted plane partitions: Calculus and asymptotics. Electronic Research Archive, 2021, 29 (1) : 1841-1857. doi: 10.3934/era.2020094

[15]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[16]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[17]

Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang. Approximation methods for the distributed order calculus using the convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1447-1468. doi: 10.3934/dcdsb.2020168

[18]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

[19]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[20]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]