October  2014, 7(5): 1065-1077. doi: 10.3934/dcdss.2014.7.1065

A nonlinear effective slip interface law for transport phenomena between a fracture flow and a porous medium

1. 

Institute of Applied Mathematics, Interdisciplinary Center of Scienti c Computing and BIOQUANT, University of Heidelberg, Im Neuenheimer Feld 294, 69120 Heidelberg, Germany

2. 

Université de Lyon, CNRS UMR 5208, Université Lyon 1, Institut Camille Jordan, 43, blvd. du 11 novembre 1918, 69622 Villeurbanne Cedex, France

Received  March 2013 Published  May 2014

We present modeling of an incompressible viscous flow through a fracture adjacent to a porous medium. A fast stationary flow, predominantly tangential to the porous medium is considered. Slow flow in such setting can be described by the Beavers-Joseph-Saffman slip. For fast flows, a nonlinear filtration law in the porous medium and a non- linear interface law are expected. In this paper we rigorously derive a quadratic effective slip interface law which holds for a range of Reynolds numbers and fracture widths. The porous medium flow is described by the Darcy law. The result shows that the interface slip law can be nonlinear, independently of the regime for the bulk flow. Since most of the interface and boundary slip laws are obtained via upscaling of complex systems, the result indicates that studying the inviscid limits for the Navier-Stokes equations with linear slip law at the boundary should be rethought.
Citation: Anna Marciniak-Czochra, Andro Mikelić. A nonlinear effective slip interface law for transport phenomena between a fracture flow and a porous medium. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1065-1077. doi: 10.3934/dcdss.2014.7.1065
References:
[1]

G. Allaire, One-phase Newtonian flow,, in Homogenization and Porous Media (ed. U. Hornung), (1997), 45.  doi: 10.1007/978-1-4612-1920-0_3.  Google Scholar

[2]

G. S. Beavers and D. D. Joseph, Boundary conditions at a naturally permeable wall,, J. Fluid Mech., 30 (1967), 197.  doi: 10.1017/S0022112067001375.  Google Scholar

[3]

A. Bourgeat, E. Marušić-Paloka and A. Mikelić, Effective behavior of porous medium containing a thin fissure,, in Calculus of Variations, (1994), 69.   Google Scholar

[4]

A. Bourgeat, E. Marušić-Paloka and A. Mikelić, Effective behavior for a fluid flow in porous medium containing a thin fissure,, Asymptotic Anal., 11 (1995), 241.   Google Scholar

[5]

A. Bourgeat, E. Marušić-Paloka and A. Mikelić, Weak non-linear corrections for Darcy's law,, $M^3$ AS : Math. Models Methods Appl. Sci., 6 (1996), 1143.  doi: 10.1142/S021820259600047X.  Google Scholar

[6]

T. Carraro, C. Goll, A. Marciniak-Czochra and A. Mikelić, Pressure jump interface law for the Stokes-Darcy coupling: Confirmation by direct numerical simulations,, Journal of Fluid Mechanics, 732 (2013), 510.  doi: 10.1017/jfm.2013.416.  Google Scholar

[7]

M. Discacciati and A. Quarteroni, Navier-Stokes/Darcy coupling: Modeling, analysis, and numerical approximation,, Rev. Mat. Complut., 22 (2009), 315.   Google Scholar

[8]

H. I. Ene and E. Sanchez-Palencia, Equations et phénomènes de surface pour l'écoulement dans un modèle de milieu poreux,, J. Mécan., 14 (1975), 73.   Google Scholar

[9]

O. Iliev and V. Laptev, On numerical simulation of flow through oil filters,, Computing and Visualization in Science, 6 (2004), 139.  doi: 10.1007/s00791-003-0118-8.  Google Scholar

[10]

W. Jäger and A. Mikelić, On the boundary conditions at the contact interface between a porous medium and a free fluid,, Ann. Sc. Norm. Super. Pisa, 23 (1996), 403.   Google Scholar

[11]

W. Jäger and A. Mikelić, On the interface boundary conditions by Beavers, Joseph and Saffman,, SIAM J. Appl. Math., 60 (2000), 1111.  doi: 10.1137/S003613999833678X.  Google Scholar

[12]

W. Jäger, A. Mikelić and N. Neuß, Asymptotic analysis of the laminar viscous flow over a porous bed,, SIAM J. on Scientific and Statistical Computing, 22 (2001), 2006.   Google Scholar

[13]

W. Jäger and A. Mikelić, Modeling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization,, Transport in Porous Media, 78 (2009), 489.  doi: 10.1007/s11242-009-9354-9.  Google Scholar

[14]

M. Kaviany, Principles of Heat Transfer in Porous Media,, 2nd Revised edition, (1995).   Google Scholar

[15]

Q. Liu and A. Prosperetti, Pressure-driven flow in a channel with porous walls,, Journal of Fluid Mechanics, 679 (2011), 77.  doi: 10.1017/jfm.2011.124.  Google Scholar

[16]

A. Marciniak-Czochra and A. Mikelić, Effective pressure interface law for transport phenomena between an unconfined fluid and a porous medium using homogenization,, SIAM: Multiscale Modeling and Simulation, 10 (2012), 285.  doi: 10.1137/110838248.  Google Scholar

[17]

A. Mikelić, Homogenization theory and applications to filtration through porous media,, in Filtration in Porous Media and Industrial Applications, (1734), 127.  doi: 10.1007/BFb0103977.  Google Scholar

[18]

P. G. Saffman, On the boundary condition at the interface of a porous medium,, Studies in Applied Mathematics, 1 (1971), 93.   Google Scholar

[19]

M. Sahraoui and M. Kaviany, Slip and no-slip velocity boundary conditions at interface of porous, plain media,, Int. J. Heat Mass Transfer, 35 (1992), 927.  doi: 10.1016/0017-9310(92)90258-T.  Google Scholar

[20]

E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory,, Springer Verlag, (1980).   Google Scholar

[21]

L. Tartar, Convergence of the homogenization process,, Appendix of [20]., ().   Google Scholar

[22]

R. Temam, Navier-Stokes Equations,, 3rd revised edition, (1984).   Google Scholar

show all references

References:
[1]

G. Allaire, One-phase Newtonian flow,, in Homogenization and Porous Media (ed. U. Hornung), (1997), 45.  doi: 10.1007/978-1-4612-1920-0_3.  Google Scholar

[2]

G. S. Beavers and D. D. Joseph, Boundary conditions at a naturally permeable wall,, J. Fluid Mech., 30 (1967), 197.  doi: 10.1017/S0022112067001375.  Google Scholar

[3]

A. Bourgeat, E. Marušić-Paloka and A. Mikelić, Effective behavior of porous medium containing a thin fissure,, in Calculus of Variations, (1994), 69.   Google Scholar

[4]

A. Bourgeat, E. Marušić-Paloka and A. Mikelić, Effective behavior for a fluid flow in porous medium containing a thin fissure,, Asymptotic Anal., 11 (1995), 241.   Google Scholar

[5]

A. Bourgeat, E. Marušić-Paloka and A. Mikelić, Weak non-linear corrections for Darcy's law,, $M^3$ AS : Math. Models Methods Appl. Sci., 6 (1996), 1143.  doi: 10.1142/S021820259600047X.  Google Scholar

[6]

T. Carraro, C. Goll, A. Marciniak-Czochra and A. Mikelić, Pressure jump interface law for the Stokes-Darcy coupling: Confirmation by direct numerical simulations,, Journal of Fluid Mechanics, 732 (2013), 510.  doi: 10.1017/jfm.2013.416.  Google Scholar

[7]

M. Discacciati and A. Quarteroni, Navier-Stokes/Darcy coupling: Modeling, analysis, and numerical approximation,, Rev. Mat. Complut., 22 (2009), 315.   Google Scholar

[8]

H. I. Ene and E. Sanchez-Palencia, Equations et phénomènes de surface pour l'écoulement dans un modèle de milieu poreux,, J. Mécan., 14 (1975), 73.   Google Scholar

[9]

O. Iliev and V. Laptev, On numerical simulation of flow through oil filters,, Computing and Visualization in Science, 6 (2004), 139.  doi: 10.1007/s00791-003-0118-8.  Google Scholar

[10]

W. Jäger and A. Mikelić, On the boundary conditions at the contact interface between a porous medium and a free fluid,, Ann. Sc. Norm. Super. Pisa, 23 (1996), 403.   Google Scholar

[11]

W. Jäger and A. Mikelić, On the interface boundary conditions by Beavers, Joseph and Saffman,, SIAM J. Appl. Math., 60 (2000), 1111.  doi: 10.1137/S003613999833678X.  Google Scholar

[12]

W. Jäger, A. Mikelić and N. Neuß, Asymptotic analysis of the laminar viscous flow over a porous bed,, SIAM J. on Scientific and Statistical Computing, 22 (2001), 2006.   Google Scholar

[13]

W. Jäger and A. Mikelić, Modeling effective interface laws for transport phenomena between an unconfined fluid and a porous medium using homogenization,, Transport in Porous Media, 78 (2009), 489.  doi: 10.1007/s11242-009-9354-9.  Google Scholar

[14]

M. Kaviany, Principles of Heat Transfer in Porous Media,, 2nd Revised edition, (1995).   Google Scholar

[15]

Q. Liu and A. Prosperetti, Pressure-driven flow in a channel with porous walls,, Journal of Fluid Mechanics, 679 (2011), 77.  doi: 10.1017/jfm.2011.124.  Google Scholar

[16]

A. Marciniak-Czochra and A. Mikelić, Effective pressure interface law for transport phenomena between an unconfined fluid and a porous medium using homogenization,, SIAM: Multiscale Modeling and Simulation, 10 (2012), 285.  doi: 10.1137/110838248.  Google Scholar

[17]

A. Mikelić, Homogenization theory and applications to filtration through porous media,, in Filtration in Porous Media and Industrial Applications, (1734), 127.  doi: 10.1007/BFb0103977.  Google Scholar

[18]

P. G. Saffman, On the boundary condition at the interface of a porous medium,, Studies in Applied Mathematics, 1 (1971), 93.   Google Scholar

[19]

M. Sahraoui and M. Kaviany, Slip and no-slip velocity boundary conditions at interface of porous, plain media,, Int. J. Heat Mass Transfer, 35 (1992), 927.  doi: 10.1016/0017-9310(92)90258-T.  Google Scholar

[20]

E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory,, Springer Verlag, (1980).   Google Scholar

[21]

L. Tartar, Convergence of the homogenization process,, Appendix of [20]., ().   Google Scholar

[22]

R. Temam, Navier-Stokes Equations,, 3rd revised edition, (1984).   Google Scholar

[1]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[2]

Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020279

[3]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[4]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[5]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[6]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[7]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[8]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[9]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[10]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[11]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

[12]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[13]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[14]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[15]

Olivier Pironneau, Alexei Lozinski, Alain Perronnet, Frédéric Hecht. Numerical zoom for multiscale problems with an application to flows through porous media. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 265-280. doi: 10.3934/dcds.2009.23.265

[16]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[17]

John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044

[18]

Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020388

[19]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[20]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]