\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Approximate solutions to a model of two-component reactive flow

Abstract Related Papers Cited by
  • We consider a model of motion of binary mixture, based on the compressible Navier-Stokes system. The mass balances of chemically reacting species are described by the reaction-diffusion equations with generalized form of multicomponent diffusion flux. Under a special relation between the two density dependent viscosity coefficients and for singular cold pressure we construct the weak solutions passing through several levels of approximation.
    Mathematics Subject Classification: 35Q30, 35K55, 35D30, 76N10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. Bothe, On the Maxwell-Stefan approach to multicomponent diffusion, Progress in Nonlinear Differential Equations and their Applications, Springer, Basel, 80 (2011), 81-93.doi: 10.1007/978-3-0348-0075-4_5.

    [2]

    D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., 238 (2003), 211-223.

    [3]

    D. Bresch and B. Desjardins, On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models, J. Math. Pures Appl. (9), 86 (2006), 362-368.doi: 10.1016/j.matpur.2006.06.005.

    [4]

    D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl. (9), 87 (2007), 57-90.doi: 10.1016/j.matpur.2006.11.001.

    [5]

    D. Bresch, B. Desjardins and C.-K. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Comm. Partial Differential Equations, 28 (2003), 843-868.doi: 10.1081/PDE-120020499.

    [6]

    G.-Q. Chen, D. Hoff and K. Trivisa, Global solutions to a model for exothermically reacting, compressible flows with large discontinuous initial data, Arch. Ration. Mech. Anal., 166 (2003), 321-358.doi: 10.1007/s00205-002-0233-6.

    [7]

    D. Donatelli and K. Trivisa, A multidimensional model for the combustion of compressible fluids, Arch. Ration. Mech. Anal., 185 (2007), 379-408.doi: 10.1007/s00205-006-0043-3.

    [8]

    E. Feireisl, On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable, Comment. Math. Univ. Carolin., 42 (2001), 83-98.

    [9]

    E. Feireisl and A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids, Birkhäuser Verlag, Basel, 2009.doi: 10.1007/978-3-7643-8843-0.

    [10]

    E. Feireisl, H. Petzeltová and K. Trivisa, Multicomponent reactive flows: Global-in-time existence for large data, Commun. Pure Appl. Anal., 7 (2008), 1017-1047.doi: 10.3934/cpaa.2008.7.1017.

    [11]

    D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.

    [12]

    V. Giovangigli, Multicomponent Flow Modeling, Birkhäuser Boston Inc., Boston, MA, 1999.doi: 10.1007/978-1-4612-1580-6.

    [13]

    R. Klein, N. Botta, T. Schneider, C. D. Munz, S. Roller, A. Meister, L. Hoffmann and T. Sonar, Asymptotic adaptive methods for multi-scale problems in fluid mechanics. Special issue on practical asymptotics, J. Engrg. Math., 39 (2001), 261-343.doi: 10.1023/A:1004844002437.

    [14]

    O. A. Ladyženskaja, V. A. Solonnikov and N. N. Uralceva, Linear and Quasilinear Equations of Parabolic Type, AMS, Trans. Math. Monographs 23, Providence, 1967.

    [15]

    P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 2, Compressible Models, Oxford Science Publications, Oxford, 1998.

    [16]

    A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1995.doi: 10.1007/978-3-0348-9234-6.

    [17]

    A. Mellet and A. Vasseur, On the barotropic compressible Navier-Stokes equations, Comm. Partial Differential Equations, 32 (2007), 431-452.doi: 10.1080/03605300600857079.

    [18]

    P. B. Mucha, M. Pokorný and E. Zatorska, Chemically reacting mixtures in terms of degenerated parabolic setting, J. Math. Phys., 54 (2013), 071501.doi: 10.1063/1.4811564.

    [19]

    A. Novotný and I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow, Oxford University Press, Oxford, 2004.

    [20]

    E. Zatorska, On the steady flow of a multicomponent, compressible, chemically reacting gas, Nonlinearity, 24 (2011), 3267-3278.doi: 10.1088/0951-7715/24/11/013.

    [21]

    E. Zatorska, On the flow of chemically reacting gaseous mixture, J. Differential Equations, 253 (2012), 3471-3500.doi: 10.1016/j.jde.2012.08.043.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(70) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return