Citation: |
[1] |
D. Bothe, On the Maxwell-Stefan approach to multicomponent diffusion, Progress in Nonlinear Differential Equations and their Applications, Springer, Basel, 80 (2011), 81-93.doi: 10.1007/978-3-0348-0075-4_5. |
[2] |
D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., 238 (2003), 211-223. |
[3] |
D. Bresch and B. Desjardins, On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models, J. Math. Pures Appl. (9), 86 (2006), 362-368.doi: 10.1016/j.matpur.2006.06.005. |
[4] |
D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl. (9), 87 (2007), 57-90.doi: 10.1016/j.matpur.2006.11.001. |
[5] |
D. Bresch, B. Desjardins and C.-K. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Comm. Partial Differential Equations, 28 (2003), 843-868.doi: 10.1081/PDE-120020499. |
[6] |
G.-Q. Chen, D. Hoff and K. Trivisa, Global solutions to a model for exothermically reacting, compressible flows with large discontinuous initial data, Arch. Ration. Mech. Anal., 166 (2003), 321-358.doi: 10.1007/s00205-002-0233-6. |
[7] |
D. Donatelli and K. Trivisa, A multidimensional model for the combustion of compressible fluids, Arch. Ration. Mech. Anal., 185 (2007), 379-408.doi: 10.1007/s00205-006-0043-3. |
[8] |
E. Feireisl, On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable, Comment. Math. Univ. Carolin., 42 (2001), 83-98. |
[9] |
E. Feireisl and A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids, Birkhäuser Verlag, Basel, 2009.doi: 10.1007/978-3-7643-8843-0. |
[10] |
E. Feireisl, H. Petzeltová and K. Trivisa, Multicomponent reactive flows: Global-in-time existence for large data, Commun. Pure Appl. Anal., 7 (2008), 1017-1047.doi: 10.3934/cpaa.2008.7.1017. |
[11] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001. |
[12] |
V. Giovangigli, Multicomponent Flow Modeling, Birkhäuser Boston Inc., Boston, MA, 1999.doi: 10.1007/978-1-4612-1580-6. |
[13] |
R. Klein, N. Botta, T. Schneider, C. D. Munz, S. Roller, A. Meister, L. Hoffmann and T. Sonar, Asymptotic adaptive methods for multi-scale problems in fluid mechanics. Special issue on practical asymptotics, J. Engrg. Math., 39 (2001), 261-343.doi: 10.1023/A:1004844002437. |
[14] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Uralceva, Linear and Quasilinear Equations of Parabolic Type, AMS, Trans. Math. Monographs 23, Providence, 1967. |
[15] |
P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 2, Compressible Models, Oxford Science Publications, Oxford, 1998. |
[16] |
A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1995.doi: 10.1007/978-3-0348-9234-6. |
[17] |
A. Mellet and A. Vasseur, On the barotropic compressible Navier-Stokes equations, Comm. Partial Differential Equations, 32 (2007), 431-452.doi: 10.1080/03605300600857079. |
[18] |
P. B. Mucha, M. Pokorný and E. Zatorska, Chemically reacting mixtures in terms of degenerated parabolic setting, J. Math. Phys., 54 (2013), 071501.doi: 10.1063/1.4811564. |
[19] |
A. Novotný and I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow, Oxford University Press, Oxford, 2004. |
[20] |
E. Zatorska, On the steady flow of a multicomponent, compressible, chemically reacting gas, Nonlinearity, 24 (2011), 3267-3278.doi: 10.1088/0951-7715/24/11/013. |
[21] |
E. Zatorska, On the flow of chemically reacting gaseous mixture, J. Differential Equations, 253 (2012), 3471-3500.doi: 10.1016/j.jde.2012.08.043. |