• Previous Article
    Lower and upper bounds to the change of vorticity by transition from slip- to no-slip fluid flow
  • DCDS-S Home
  • This Issue
  • Next Article
    A nonlinear effective slip interface law for transport phenomena between a fracture flow and a porous medium
October  2014, 7(5): 1079-1099. doi: 10.3934/dcdss.2014.7.1079

Approximate solutions to a model of two-component reactive flow

1. 

Institute of Applied Mathematics and Mechanics, University of Warsaw, ul. Banacha 2, 02-097 Warszawa, Poland, Poland

2. 

Charles University in Prague, Faculty of Mathematics and Physics, Mathematical Institute of Charles University, Sokolovská 83, 186 75 Praha, Czech Republic

Received  October 2012 Revised  January 2013 Published  May 2014

We consider a model of motion of binary mixture, based on the compressible Navier-Stokes system. The mass balances of chemically reacting species are described by the reaction-diffusion equations with generalized form of multicomponent diffusion flux. Under a special relation between the two density dependent viscosity coefficients and for singular cold pressure we construct the weak solutions passing through several levels of approximation.
Citation: Piotr Bogusław Mucha, Milan Pokorný, Ewelina Zatorska. Approximate solutions to a model of two-component reactive flow. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 1079-1099. doi: 10.3934/dcdss.2014.7.1079
References:
[1]

D. Bothe, On the Maxwell-Stefan approach to multicomponent diffusion, Progress in Nonlinear Differential Equations and their Applications, Springer, Basel, 80 (2011), 81-93. doi: 10.1007/978-3-0348-0075-4_5.

[2]

D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., 238 (2003), 211-223.

[3]

D. Bresch and B. Desjardins, On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models, J. Math. Pures Appl. (9), 86 (2006), 362-368. doi: 10.1016/j.matpur.2006.06.005.

[4]

D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl. (9), 87 (2007), 57-90. doi: 10.1016/j.matpur.2006.11.001.

[5]

D. Bresch, B. Desjardins and C.-K. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Comm. Partial Differential Equations, 28 (2003), 843-868. doi: 10.1081/PDE-120020499.

[6]

G.-Q. Chen, D. Hoff and K. Trivisa, Global solutions to a model for exothermically reacting, compressible flows with large discontinuous initial data, Arch. Ration. Mech. Anal., 166 (2003), 321-358. doi: 10.1007/s00205-002-0233-6.

[7]

D. Donatelli and K. Trivisa, A multidimensional model for the combustion of compressible fluids, Arch. Ration. Mech. Anal., 185 (2007), 379-408. doi: 10.1007/s00205-006-0043-3.

[8]

E. Feireisl, On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable, Comment. Math. Univ. Carolin., 42 (2001), 83-98.

[9]

E. Feireisl and A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8843-0.

[10]

E. Feireisl, H. Petzeltová and K. Trivisa, Multicomponent reactive flows: Global-in-time existence for large data, Commun. Pure Appl. Anal., 7 (2008), 1017-1047. doi: 10.3934/cpaa.2008.7.1017.

[11]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.

[12]

V. Giovangigli, Multicomponent Flow Modeling, Birkhäuser Boston Inc., Boston, MA, 1999. doi: 10.1007/978-1-4612-1580-6.

[13]

R. Klein, N. Botta, T. Schneider, C. D. Munz, S. Roller, A. Meister, L. Hoffmann and T. Sonar, Asymptotic adaptive methods for multi-scale problems in fluid mechanics. Special issue on practical asymptotics, J. Engrg. Math., 39 (2001), 261-343. doi: 10.1023/A:1004844002437.

[14]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Uralceva, Linear and Quasilinear Equations of Parabolic Type, AMS, Trans. Math. Monographs 23, Providence, 1967.

[15]

P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 2, Compressible Models, Oxford Science Publications, Oxford, 1998.

[16]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1995. doi: 10.1007/978-3-0348-9234-6.

[17]

A. Mellet and A. Vasseur, On the barotropic compressible Navier-Stokes equations, Comm. Partial Differential Equations, 32 (2007), 431-452. doi: 10.1080/03605300600857079.

[18]

P. B. Mucha, M. Pokorný and E. Zatorska, Chemically reacting mixtures in terms of degenerated parabolic setting, J. Math. Phys., 54 (2013), 071501. doi: 10.1063/1.4811564.

[19]

A. Novotný and I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow, Oxford University Press, Oxford, 2004.

[20]

E. Zatorska, On the steady flow of a multicomponent, compressible, chemically reacting gas, Nonlinearity, 24 (2011), 3267-3278. doi: 10.1088/0951-7715/24/11/013.

[21]

E. Zatorska, On the flow of chemically reacting gaseous mixture, J. Differential Equations, 253 (2012), 3471-3500. doi: 10.1016/j.jde.2012.08.043.

show all references

References:
[1]

D. Bothe, On the Maxwell-Stefan approach to multicomponent diffusion, Progress in Nonlinear Differential Equations and their Applications, Springer, Basel, 80 (2011), 81-93. doi: 10.1007/978-3-0348-0075-4_5.

[2]

D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model, Comm. Math. Phys., 238 (2003), 211-223.

[3]

D. Bresch and B. Desjardins, On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier-Stokes models, J. Math. Pures Appl. (9), 86 (2006), 362-368. doi: 10.1016/j.matpur.2006.06.005.

[4]

D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids, J. Math. Pures Appl. (9), 87 (2007), 57-90. doi: 10.1016/j.matpur.2006.11.001.

[5]

D. Bresch, B. Desjardins and C.-K. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Comm. Partial Differential Equations, 28 (2003), 843-868. doi: 10.1081/PDE-120020499.

[6]

G.-Q. Chen, D. Hoff and K. Trivisa, Global solutions to a model for exothermically reacting, compressible flows with large discontinuous initial data, Arch. Ration. Mech. Anal., 166 (2003), 321-358. doi: 10.1007/s00205-002-0233-6.

[7]

D. Donatelli and K. Trivisa, A multidimensional model for the combustion of compressible fluids, Arch. Ration. Mech. Anal., 185 (2007), 379-408. doi: 10.1007/s00205-006-0043-3.

[8]

E. Feireisl, On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable, Comment. Math. Univ. Carolin., 42 (2001), 83-98.

[9]

E. Feireisl and A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids, Birkhäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8843-0.

[10]

E. Feireisl, H. Petzeltová and K. Trivisa, Multicomponent reactive flows: Global-in-time existence for large data, Commun. Pure Appl. Anal., 7 (2008), 1017-1047. doi: 10.3934/cpaa.2008.7.1017.

[11]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.

[12]

V. Giovangigli, Multicomponent Flow Modeling, Birkhäuser Boston Inc., Boston, MA, 1999. doi: 10.1007/978-1-4612-1580-6.

[13]

R. Klein, N. Botta, T. Schneider, C. D. Munz, S. Roller, A. Meister, L. Hoffmann and T. Sonar, Asymptotic adaptive methods for multi-scale problems in fluid mechanics. Special issue on practical asymptotics, J. Engrg. Math., 39 (2001), 261-343. doi: 10.1023/A:1004844002437.

[14]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Uralceva, Linear and Quasilinear Equations of Parabolic Type, AMS, Trans. Math. Monographs 23, Providence, 1967.

[15]

P.-L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 2, Compressible Models, Oxford Science Publications, Oxford, 1998.

[16]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1995. doi: 10.1007/978-3-0348-9234-6.

[17]

A. Mellet and A. Vasseur, On the barotropic compressible Navier-Stokes equations, Comm. Partial Differential Equations, 32 (2007), 431-452. doi: 10.1080/03605300600857079.

[18]

P. B. Mucha, M. Pokorný and E. Zatorska, Chemically reacting mixtures in terms of degenerated parabolic setting, J. Math. Phys., 54 (2013), 071501. doi: 10.1063/1.4811564.

[19]

A. Novotný and I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow, Oxford University Press, Oxford, 2004.

[20]

E. Zatorska, On the steady flow of a multicomponent, compressible, chemically reacting gas, Nonlinearity, 24 (2011), 3267-3278. doi: 10.1088/0951-7715/24/11/013.

[21]

E. Zatorska, On the flow of chemically reacting gaseous mixture, J. Differential Equations, 253 (2012), 3471-3500. doi: 10.1016/j.jde.2012.08.043.

[1]

Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041

[2]

Xulong Qin, Zheng-An Yao, Hongxing Zhao. One dimensional compressible Navier-Stokes equations with density-dependent viscosity and free boundaries. Communications on Pure and Applied Analysis, 2008, 7 (2) : 373-381. doi: 10.3934/cpaa.2008.7.373

[3]

Guangwu Wang, Boling Guo. Global weak solution to the quantum Navier-Stokes-Landau-Lifshitz equations with density-dependent viscosity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6141-6166. doi: 10.3934/dcdsb.2019133

[4]

Jianwei Yang, Peng Cheng, Yudong Wang. Asymptotic limit of a Navier-Stokes-Korteweg system with density-dependent viscosity. Electronic Research Announcements, 2015, 22: 20-31. doi: 10.3934/era.2015.22.20

[5]

Mei Wang, Zilai Li, Zhenhua Guo. Global weak solution to 3D compressible flows with density-dependent viscosity and free boundary. Communications on Pure and Applied Analysis, 2017, 16 (1) : 1-24. doi: 10.3934/cpaa.2017001

[6]

Wuming Li, Xiaojun Liu, Quansen Jiu. The decay estimates of solutions for 1D compressible flows with density-dependent viscosity coefficients. Communications on Pure and Applied Analysis, 2013, 12 (2) : 647-661. doi: 10.3934/cpaa.2013.12.647

[7]

Quansen Jiu, Zhouping Xin. The Cauchy problem for 1D compressible flows with density-dependent viscosity coefficients. Kinetic and Related Models, 2008, 1 (2) : 313-330. doi: 10.3934/krm.2008.1.313

[8]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[9]

Jishan Fan, Tohru Ozawa. A regularity criterion for 3D density-dependent MHD system with zero viscosity. Conference Publications, 2015, 2015 (special) : 395-399. doi: 10.3934/proc.2015.0395

[10]

Weiping Yan. Existence of weak solutions to the three-dimensional density-dependent generalized incompressible magnetohydrodynamic flows. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1359-1385. doi: 10.3934/dcds.2015.35.1359

[11]

Tian Ma, Shouhong Wang. Asymptotic structure for solutions of the Navier--Stokes equations. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 189-204. doi: 10.3934/dcds.2004.11.189

[12]

Milan Pokorný, Piotr B. Mucha. 3D steady compressible Navier--Stokes equations. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 151-163. doi: 10.3934/dcdss.2008.1.151

[13]

Pavel I. Plotnikov, Jan Sokolowski. Optimal shape control of airfoil in compressible gas flow governed by Navier-Stokes equations. Evolution Equations and Control Theory, 2013, 2 (3) : 495-516. doi: 10.3934/eect.2013.2.495

[14]

Bingkang Huang, Lusheng Wang, Qinghua Xiao. Global nonlinear stability of rarefaction waves for compressible Navier-Stokes equations with temperature and density dependent transport coefficients. Kinetic and Related Models, 2016, 9 (3) : 469-514. doi: 10.3934/krm.2016004

[15]

Ping Chen, Daoyuan Fang, Ting Zhang. Free boundary problem for compressible flows with density--dependent viscosity coefficients. Communications on Pure and Applied Analysis, 2011, 10 (2) : 459-478. doi: 10.3934/cpaa.2011.10.459

[16]

Xian-Gao Liu, Jie Qing. Globally weak solutions to the flow of compressible liquid crystals system. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 757-788. doi: 10.3934/dcds.2013.33.757

[17]

Lukáš Poul. Existence of weak solutions to the Navier-Stokes-Fourier system on Lipschitz domains. Conference Publications, 2007, 2007 (Special) : 834-843. doi: 10.3934/proc.2007.2007.834

[18]

Yuming Qin, T. F. Ma, M. M. Cavalcanti, D. Andrade. Exponential stability in $H^4$ for the Navier--Stokes equations of compressible and heat conductive fluid. Communications on Pure and Applied Analysis, 2005, 4 (3) : 635-664. doi: 10.3934/cpaa.2005.4.635

[19]

Jiří Neustupa. A note on local interior regularity of a suitable weak solution to the Navier--Stokes problem. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1391-1400. doi: 10.3934/dcdss.2013.6.1391

[20]

Xin Jiang, Zhikun She, Shigui Ruan. Global dynamics of a predator-prey system with density-dependent mortality and ratio-dependent functional response. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1967-1990. doi: 10.3934/dcdsb.2020041

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (62)
  • HTML views (0)
  • Cited by (16)

[Back to Top]