October  2014, 7(5): 1101-1109. doi: 10.3934/dcdss.2014.7.1101

Lower and upper bounds to the change of vorticity by transition from slip- to no-slip fluid flow

1. 

Institute of Mathematics, University of Paderborn, D-33095 Paderborn, Germany

Received  March 2013 Revised  November 2013 Published  May 2014

For the transition from slip- to no-slip fluid flow, we establish lower and upper bounds to the resulting change of the $L^2$-norm of the vorticity. Moreover we present a transport-diffusion splitting scheme, built up solely by a transport step and subsequent diffusion step (without any additional vorticity creation operator as introduced in former studies by Lighthill, Marsden, and Chorin), the splitting scheme being consistent with the Navier-Stokes equations with no-slip condition.
Citation: Reimund Rautmann. Lower and upper bounds to the change of vorticity by transition from slip- to no-slip fluid flow. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1101-1109. doi: 10.3934/dcdss.2014.7.1101
References:
[1]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975).   Google Scholar

[2]

G. Alessandrini, A. Douglis and E. Fabes, An approximate layering method for the Navier-Stokes equations in bounded cylinders,, Ann. Mat. Pura Appl., 135 (1983), 329.  doi: 10.1007/BF01781075.  Google Scholar

[3]

H. Amann, Linear and Quasilinear Parabolic Problems,, Vol. 1, (1995).  doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[4]

M. Bause, Optimale Konvergenzraten F"ur voll Diskretisierte Navier-Stokes Approximationen H"oherer Ordnung in Gebieten mit Lipschitz-Rand,, Dissertation, (1997).   Google Scholar

[5]

J. T. Beale and A. Majda, Rates of convergence for viscous splitting of the Navier-Stokes equations,, Math. Comp., 37 (1981), 243.  doi: 10.1090/S0025-5718-1981-0628693-0.  Google Scholar

[6]

J. T. Beale and C. Greengard, Convergence of Euler-Stokes splitting of the Navier-Stokes equations,, IBM Research Report RC 18072 (1992), 47 (1992), 1083.  doi: 10.1002/cpa.3160470805.  Google Scholar

[7]

G. Benfatto and M. Pulvirenti, Generation of vorticity near the boundary in planar Navier-Stokes flows,, Commun. Math. Phys., 96 (1984), 59.  doi: 10.1007/BF01217348.  Google Scholar

[8]

G. Benfatto and M. Pulvirenti, Convergence of Chorin-Marsden product formula in the half-plane,, Commun. Math. Phys., 106 (1986), 427.  doi: 10.1007/BF01207255.  Google Scholar

[9]

L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes,, Rend. Mat. Sem. Univ. Padova, 31 (1961), 308.   Google Scholar

[10]

A. J. Chorin, Numerical study of slightly viscous flow,, J. Fluid Mech., 57 (1973), 785.  doi: 10.1017/S0022112073002016.  Google Scholar

[11]

A. J. Chorin, Vortex sheet approximation of boundary layers,, J. Comput. Phys., 27 (1978), 428.  doi: 10.1016/0021-9991(78)90019-0.  Google Scholar

[12]

A. J. Chorin, T. J. R. Hughes, M. F. McCracken and J. E. Marsden, Product formulas and numerical algorithms,, Comm. Pure Appl. Math., 31 (1978), 205.  doi: 10.1002/cpa.3160310205.  Google Scholar

[13]

P. Deuring and W. von Wahl, Strong solutions of the Navier-Stokes system in Lipschitz bounded domains,, Math. Nachr., 171 (1995), 111.  doi: 10.1002/mana.19951710108.  Google Scholar

[14]

A. Douglis and E. Fabes, A layering method for viscous, incompressible $L_p$ flows occupying $\mathbbR^n$,, Research Notes in Math., 108 (1984).   Google Scholar

[15]

D. Fujiwara and H. Morimoto, An $L_r$-theorem of the Helmholtz decomposition of vector fields,, J. Fac. Sci. Tokyo U., 24 (1977), 685.   Google Scholar

[16]

M.J. Lighthill, Introductions. Real and ideal fluids, II. Introduction. Boundary layer theory,, in Laminar Boundary Layers, (1963), 1.   Google Scholar

[17]

J. Marsden, On product formulas for nonlinear semi-groups,, J. Funct. Anal., 13 (1973), 51.  doi: 10.1016/0022-1236(73)90066-9.  Google Scholar

[18]

J. Marsden, Applications of Global Analysis in Mathematical Physics,, Publish/Perish, (1974).   Google Scholar

[19]

V. G. Maz'ja and B. A. Plamenevskii, First boundary value problem for the equation of hydrodynamic in a domain with a piecewise-smooth boundary,, J. Soviet. Math., (1983), 777.  doi: 10.1007/BF01094440.  Google Scholar

[20]

O. Pironneau, On the transport-diffusion algorithm and its applications to the Navier-Stokes equation,, Numer. Math., 38 (1982), 309.  doi: 10.1007/BF01396435.  Google Scholar

[21]

L. Prandtl, Die Entstehung von Wirbeln in einer Flüssigkeit mit kleiner Reibung,, Zeitschrift für Flugtechnik und Motorluftschiffahrt, 18 (1927), 489.   Google Scholar

[22]

L. Prandtl, The generation of vortices in fluids of small viscosity,, Journal of the Royal Aeronautical Society, 31 (1927), 720.   Google Scholar

[23]

R. Rautmann, Ein Vektorpotentialmodell für die Wirbelbildung am Rand umströmter Körper,, Z. Angew. Math. Mech., 68 (1988), 383.  doi: 10.1002/zamm.19880680823.  Google Scholar

[24]

R. Rautmann, Eine konvergente Produktformel für linearisierte Navier-Stokes Probleme,, Z. Angew. Math. Mech., 69 (1989).   Google Scholar

[25]

R. Rautmann, $H^2$-Convergent Linearizations to the Navier-Stokes Initial Value Problem,, in Proc. Intern Conf. on New Developments in Partial Differential Equations and Applications to Mathematical Physics, (1992), 14.   Google Scholar

[26]

R. Rautmann and K. Masuda, $H^2$-Convergent Approximation Schemes to the Navier-Stokes Equations,, Comm. Math. Univ. Sancti Pauli, 43 (1994), 55.   Google Scholar

[27]

H. Sohr, The Navier-Stokes Equations,, Birkhäuser, (2001).   Google Scholar

[28]

V. A. Solonnikow, On the Stokes equations in domains with non-smooth boundaries and on viscous incompressible flow with a free surface,, in Nonlinear partial differential equations and their applications, (1982), 340.   Google Scholar

[29]

L. Stupelis, Navier-Stokes Equations in Irregular Domains,, Kluwer Academic Publishers, (1995).   Google Scholar

[30]

W. von Wahl, The equations of Navier-Stokes and Abstract Parabolic Equations,, Vieweg, (1985).   Google Scholar

[31]

L.-A. Ying, Viscous splitting method for the unbounded problem of the Navier-Stokes equations,, Math. Comp., 55 (1990), 89.  doi: 10.1090/S0025-5718-1990-1023053-0.  Google Scholar

[32]

L.-A. Ying and P. Zhang, Vortex Methods,, Science Press, (1997).   Google Scholar

[33]

Z. Yosida and Y. Giga, Remarks on spectra of operator rot,, Math. Zeitschrift, 204 (1990), 235.  doi: 10.1007/BF02570870.  Google Scholar

show all references

References:
[1]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975).   Google Scholar

[2]

G. Alessandrini, A. Douglis and E. Fabes, An approximate layering method for the Navier-Stokes equations in bounded cylinders,, Ann. Mat. Pura Appl., 135 (1983), 329.  doi: 10.1007/BF01781075.  Google Scholar

[3]

H. Amann, Linear and Quasilinear Parabolic Problems,, Vol. 1, (1995).  doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[4]

M. Bause, Optimale Konvergenzraten F"ur voll Diskretisierte Navier-Stokes Approximationen H"oherer Ordnung in Gebieten mit Lipschitz-Rand,, Dissertation, (1997).   Google Scholar

[5]

J. T. Beale and A. Majda, Rates of convergence for viscous splitting of the Navier-Stokes equations,, Math. Comp., 37 (1981), 243.  doi: 10.1090/S0025-5718-1981-0628693-0.  Google Scholar

[6]

J. T. Beale and C. Greengard, Convergence of Euler-Stokes splitting of the Navier-Stokes equations,, IBM Research Report RC 18072 (1992), 47 (1992), 1083.  doi: 10.1002/cpa.3160470805.  Google Scholar

[7]

G. Benfatto and M. Pulvirenti, Generation of vorticity near the boundary in planar Navier-Stokes flows,, Commun. Math. Phys., 96 (1984), 59.  doi: 10.1007/BF01217348.  Google Scholar

[8]

G. Benfatto and M. Pulvirenti, Convergence of Chorin-Marsden product formula in the half-plane,, Commun. Math. Phys., 106 (1986), 427.  doi: 10.1007/BF01207255.  Google Scholar

[9]

L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes,, Rend. Mat. Sem. Univ. Padova, 31 (1961), 308.   Google Scholar

[10]

A. J. Chorin, Numerical study of slightly viscous flow,, J. Fluid Mech., 57 (1973), 785.  doi: 10.1017/S0022112073002016.  Google Scholar

[11]

A. J. Chorin, Vortex sheet approximation of boundary layers,, J. Comput. Phys., 27 (1978), 428.  doi: 10.1016/0021-9991(78)90019-0.  Google Scholar

[12]

A. J. Chorin, T. J. R. Hughes, M. F. McCracken and J. E. Marsden, Product formulas and numerical algorithms,, Comm. Pure Appl. Math., 31 (1978), 205.  doi: 10.1002/cpa.3160310205.  Google Scholar

[13]

P. Deuring and W. von Wahl, Strong solutions of the Navier-Stokes system in Lipschitz bounded domains,, Math. Nachr., 171 (1995), 111.  doi: 10.1002/mana.19951710108.  Google Scholar

[14]

A. Douglis and E. Fabes, A layering method for viscous, incompressible $L_p$ flows occupying $\mathbbR^n$,, Research Notes in Math., 108 (1984).   Google Scholar

[15]

D. Fujiwara and H. Morimoto, An $L_r$-theorem of the Helmholtz decomposition of vector fields,, J. Fac. Sci. Tokyo U., 24 (1977), 685.   Google Scholar

[16]

M.J. Lighthill, Introductions. Real and ideal fluids, II. Introduction. Boundary layer theory,, in Laminar Boundary Layers, (1963), 1.   Google Scholar

[17]

J. Marsden, On product formulas for nonlinear semi-groups,, J. Funct. Anal., 13 (1973), 51.  doi: 10.1016/0022-1236(73)90066-9.  Google Scholar

[18]

J. Marsden, Applications of Global Analysis in Mathematical Physics,, Publish/Perish, (1974).   Google Scholar

[19]

V. G. Maz'ja and B. A. Plamenevskii, First boundary value problem for the equation of hydrodynamic in a domain with a piecewise-smooth boundary,, J. Soviet. Math., (1983), 777.  doi: 10.1007/BF01094440.  Google Scholar

[20]

O. Pironneau, On the transport-diffusion algorithm and its applications to the Navier-Stokes equation,, Numer. Math., 38 (1982), 309.  doi: 10.1007/BF01396435.  Google Scholar

[21]

L. Prandtl, Die Entstehung von Wirbeln in einer Flüssigkeit mit kleiner Reibung,, Zeitschrift für Flugtechnik und Motorluftschiffahrt, 18 (1927), 489.   Google Scholar

[22]

L. Prandtl, The generation of vortices in fluids of small viscosity,, Journal of the Royal Aeronautical Society, 31 (1927), 720.   Google Scholar

[23]

R. Rautmann, Ein Vektorpotentialmodell für die Wirbelbildung am Rand umströmter Körper,, Z. Angew. Math. Mech., 68 (1988), 383.  doi: 10.1002/zamm.19880680823.  Google Scholar

[24]

R. Rautmann, Eine konvergente Produktformel für linearisierte Navier-Stokes Probleme,, Z. Angew. Math. Mech., 69 (1989).   Google Scholar

[25]

R. Rautmann, $H^2$-Convergent Linearizations to the Navier-Stokes Initial Value Problem,, in Proc. Intern Conf. on New Developments in Partial Differential Equations and Applications to Mathematical Physics, (1992), 14.   Google Scholar

[26]

R. Rautmann and K. Masuda, $H^2$-Convergent Approximation Schemes to the Navier-Stokes Equations,, Comm. Math. Univ. Sancti Pauli, 43 (1994), 55.   Google Scholar

[27]

H. Sohr, The Navier-Stokes Equations,, Birkhäuser, (2001).   Google Scholar

[28]

V. A. Solonnikow, On the Stokes equations in domains with non-smooth boundaries and on viscous incompressible flow with a free surface,, in Nonlinear partial differential equations and their applications, (1982), 340.   Google Scholar

[29]

L. Stupelis, Navier-Stokes Equations in Irregular Domains,, Kluwer Academic Publishers, (1995).   Google Scholar

[30]

W. von Wahl, The equations of Navier-Stokes and Abstract Parabolic Equations,, Vieweg, (1985).   Google Scholar

[31]

L.-A. Ying, Viscous splitting method for the unbounded problem of the Navier-Stokes equations,, Math. Comp., 55 (1990), 89.  doi: 10.1090/S0025-5718-1990-1023053-0.  Google Scholar

[32]

L.-A. Ying and P. Zhang, Vortex Methods,, Science Press, (1997).   Google Scholar

[33]

Z. Yosida and Y. Giga, Remarks on spectra of operator rot,, Math. Zeitschrift, 204 (1990), 235.  doi: 10.1007/BF02570870.  Google Scholar

[1]

Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148

[2]

Anna Marciniak-Czochra, Andro Mikelić. A nonlinear effective slip interface law for transport phenomena between a fracture flow and a porous medium. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1065-1077. doi: 10.3934/dcdss.2014.7.1065

[3]

Martin Burger, Jan-Frederik Pietschmann, Marie-Therese Wolfram. Identification of nonlinearities in transport-diffusion models of crowded motion. Inverse Problems & Imaging, 2013, 7 (4) : 1157-1182. doi: 10.3934/ipi.2013.7.1157

[4]

W. G. Litvinov. Problem on stationary flow of electrorheological fluids at the generalized conditions of slip on the boundary. Communications on Pure & Applied Analysis, 2007, 6 (1) : 247-277. doi: 10.3934/cpaa.2007.6.247

[5]

César Nieto, Mauricio Giraldo, Henry Power. Boundary integral equation approach for stokes slip flow in rotating mixers. Discrete & Continuous Dynamical Systems - B, 2011, 15 (4) : 1019-1044. doi: 10.3934/dcdsb.2011.15.1019

[6]

Guangrong Wu, Ping Zhang. The zero diffusion limit of 2-D Navier-Stokes equations with $L^1$ initial vorticity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 631-638. doi: 10.3934/dcds.1999.5.631

[7]

Hongjie Dong, Dong Li. On a generalized maximum principle for a transport-diffusion model with $\log$-modulated fractional dissipation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3437-3454. doi: 10.3934/dcds.2014.34.3437

[8]

Yasir Ali, Arshad Alam Khan. Exact solution of magnetohydrodynamic slip flow and heat transfer over an oscillating and translating porous plate. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 595-606. doi: 10.3934/dcdss.2018034

[9]

Yaqing Liu, Liancun Zheng. Second-order slip flow of a generalized Oldroyd-B fluid through porous medium. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2031-2046. doi: 10.3934/dcdss.2016083

[10]

María Anguiano, Francisco Javier Suárez-Grau. Newtonian fluid flow in a thin porous medium with non-homogeneous slip boundary conditions. Networks & Heterogeneous Media, 2019, 14 (2) : 289-316. doi: 10.3934/nhm.2019012

[11]

Najwa Najib, Norfifah Bachok, Norihan Md Arifin, Fadzilah Md Ali. Stability analysis of stagnation point flow in nanofluid over stretching/shrinking sheet with slip effect using buongiorno's model. Numerical Algebra, Control & Optimization, 2019, 9 (4) : 423-431. doi: 10.3934/naco.2019041

[12]

Assane Lo, Nasser-eddine Tatar. Exponential stabilization of a structure with interfacial slip. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6285-6306. doi: 10.3934/dcds.2016073

[13]

Dean Crnković, Bernardo Gabriel Rodrigues, Sanja Rukavina, Loredana Simčić. Self-orthogonal codes from orbit matrices of 2-designs. Advances in Mathematics of Communications, 2013, 7 (2) : 161-174. doi: 10.3934/amc.2013.7.161

[14]

Asim Aziz, Wasim Jamshed. Unsteady MHD slip flow of non Newtonian power-law nanofluid over a moving surface with temperature dependent thermal conductivity. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 617-630. doi: 10.3934/dcdss.2018036

[15]

Luca Calatroni, Bertram Düring, Carola-Bibiane Schönlieb. ADI splitting schemes for a fourth-order nonlinear partial differential equation from image processing. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 931-957. doi: 10.3934/dcds.2014.34.931

[16]

Evgenii S. Baranovskii. Steady flows of an Oldroyd fluid with threshold slip. Communications on Pure & Applied Analysis, 2019, 18 (2) : 735-750. doi: 10.3934/cpaa.2019036

[17]

Jaroslav Haslinger, Raino A. E. Mäkinen, Jan Stebel. Shape optimization for Stokes problem with threshold slip boundary conditions. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1281-1301. doi: 10.3934/dcdss.2017069

[18]

Chun Liu, Jie Shen. On liquid crystal flows with free-slip boundary conditions. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 307-318. doi: 10.3934/dcds.2001.7.307

[19]

Eduard Feireisl, Josef Málek, Antonín Novotný. Navier's slip and incompressible limits in domains with variable bottoms. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 427-460. doi: 10.3934/dcdss.2008.1.427

[20]

Boris Muha, Zvonimir Tutek. Note on evolutionary free piston problem for Stokes equations with slip boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1629-1639. doi: 10.3934/cpaa.2014.13.1629

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]