October  2014, 7(5): 1101-1109. doi: 10.3934/dcdss.2014.7.1101

Lower and upper bounds to the change of vorticity by transition from slip- to no-slip fluid flow

1. 

Institute of Mathematics, University of Paderborn, D-33095 Paderborn, Germany

Received  March 2013 Revised  November 2013 Published  May 2014

For the transition from slip- to no-slip fluid flow, we establish lower and upper bounds to the resulting change of the $L^2$-norm of the vorticity. Moreover we present a transport-diffusion splitting scheme, built up solely by a transport step and subsequent diffusion step (without any additional vorticity creation operator as introduced in former studies by Lighthill, Marsden, and Chorin), the splitting scheme being consistent with the Navier-Stokes equations with no-slip condition.
Citation: Reimund Rautmann. Lower and upper bounds to the change of vorticity by transition from slip- to no-slip fluid flow. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1101-1109. doi: 10.3934/dcdss.2014.7.1101
References:
[1]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975).   Google Scholar

[2]

G. Alessandrini, A. Douglis and E. Fabes, An approximate layering method for the Navier-Stokes equations in bounded cylinders,, Ann. Mat. Pura Appl., 135 (1983), 329.  doi: 10.1007/BF01781075.  Google Scholar

[3]

H. Amann, Linear and Quasilinear Parabolic Problems,, Vol. 1, (1995).  doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[4]

M. Bause, Optimale Konvergenzraten F"ur voll Diskretisierte Navier-Stokes Approximationen H"oherer Ordnung in Gebieten mit Lipschitz-Rand,, Dissertation, (1997).   Google Scholar

[5]

J. T. Beale and A. Majda, Rates of convergence for viscous splitting of the Navier-Stokes equations,, Math. Comp., 37 (1981), 243.  doi: 10.1090/S0025-5718-1981-0628693-0.  Google Scholar

[6]

J. T. Beale and C. Greengard, Convergence of Euler-Stokes splitting of the Navier-Stokes equations,, IBM Research Report RC 18072 (1992), 47 (1992), 1083.  doi: 10.1002/cpa.3160470805.  Google Scholar

[7]

G. Benfatto and M. Pulvirenti, Generation of vorticity near the boundary in planar Navier-Stokes flows,, Commun. Math. Phys., 96 (1984), 59.  doi: 10.1007/BF01217348.  Google Scholar

[8]

G. Benfatto and M. Pulvirenti, Convergence of Chorin-Marsden product formula in the half-plane,, Commun. Math. Phys., 106 (1986), 427.  doi: 10.1007/BF01207255.  Google Scholar

[9]

L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes,, Rend. Mat. Sem. Univ. Padova, 31 (1961), 308.   Google Scholar

[10]

A. J. Chorin, Numerical study of slightly viscous flow,, J. Fluid Mech., 57 (1973), 785.  doi: 10.1017/S0022112073002016.  Google Scholar

[11]

A. J. Chorin, Vortex sheet approximation of boundary layers,, J. Comput. Phys., 27 (1978), 428.  doi: 10.1016/0021-9991(78)90019-0.  Google Scholar

[12]

A. J. Chorin, T. J. R. Hughes, M. F. McCracken and J. E. Marsden, Product formulas and numerical algorithms,, Comm. Pure Appl. Math., 31 (1978), 205.  doi: 10.1002/cpa.3160310205.  Google Scholar

[13]

P. Deuring and W. von Wahl, Strong solutions of the Navier-Stokes system in Lipschitz bounded domains,, Math. Nachr., 171 (1995), 111.  doi: 10.1002/mana.19951710108.  Google Scholar

[14]

A. Douglis and E. Fabes, A layering method for viscous, incompressible $L_p$ flows occupying $\mathbbR^n$,, Research Notes in Math., 108 (1984).   Google Scholar

[15]

D. Fujiwara and H. Morimoto, An $L_r$-theorem of the Helmholtz decomposition of vector fields,, J. Fac. Sci. Tokyo U., 24 (1977), 685.   Google Scholar

[16]

M.J. Lighthill, Introductions. Real and ideal fluids, II. Introduction. Boundary layer theory,, in Laminar Boundary Layers, (1963), 1.   Google Scholar

[17]

J. Marsden, On product formulas for nonlinear semi-groups,, J. Funct. Anal., 13 (1973), 51.  doi: 10.1016/0022-1236(73)90066-9.  Google Scholar

[18]

J. Marsden, Applications of Global Analysis in Mathematical Physics,, Publish/Perish, (1974).   Google Scholar

[19]

V. G. Maz'ja and B. A. Plamenevskii, First boundary value problem for the equation of hydrodynamic in a domain with a piecewise-smooth boundary,, J. Soviet. Math., (1983), 777.  doi: 10.1007/BF01094440.  Google Scholar

[20]

O. Pironneau, On the transport-diffusion algorithm and its applications to the Navier-Stokes equation,, Numer. Math., 38 (1982), 309.  doi: 10.1007/BF01396435.  Google Scholar

[21]

L. Prandtl, Die Entstehung von Wirbeln in einer Flüssigkeit mit kleiner Reibung,, Zeitschrift für Flugtechnik und Motorluftschiffahrt, 18 (1927), 489.   Google Scholar

[22]

L. Prandtl, The generation of vortices in fluids of small viscosity,, Journal of the Royal Aeronautical Society, 31 (1927), 720.   Google Scholar

[23]

R. Rautmann, Ein Vektorpotentialmodell für die Wirbelbildung am Rand umströmter Körper,, Z. Angew. Math. Mech., 68 (1988), 383.  doi: 10.1002/zamm.19880680823.  Google Scholar

[24]

R. Rautmann, Eine konvergente Produktformel für linearisierte Navier-Stokes Probleme,, Z. Angew. Math. Mech., 69 (1989).   Google Scholar

[25]

R. Rautmann, $H^2$-Convergent Linearizations to the Navier-Stokes Initial Value Problem,, in Proc. Intern Conf. on New Developments in Partial Differential Equations and Applications to Mathematical Physics, (1992), 14.   Google Scholar

[26]

R. Rautmann and K. Masuda, $H^2$-Convergent Approximation Schemes to the Navier-Stokes Equations,, Comm. Math. Univ. Sancti Pauli, 43 (1994), 55.   Google Scholar

[27]

H. Sohr, The Navier-Stokes Equations,, Birkhäuser, (2001).   Google Scholar

[28]

V. A. Solonnikow, On the Stokes equations in domains with non-smooth boundaries and on viscous incompressible flow with a free surface,, in Nonlinear partial differential equations and their applications, (1982), 340.   Google Scholar

[29]

L. Stupelis, Navier-Stokes Equations in Irregular Domains,, Kluwer Academic Publishers, (1995).   Google Scholar

[30]

W. von Wahl, The equations of Navier-Stokes and Abstract Parabolic Equations,, Vieweg, (1985).   Google Scholar

[31]

L.-A. Ying, Viscous splitting method for the unbounded problem of the Navier-Stokes equations,, Math. Comp., 55 (1990), 89.  doi: 10.1090/S0025-5718-1990-1023053-0.  Google Scholar

[32]

L.-A. Ying and P. Zhang, Vortex Methods,, Science Press, (1997).   Google Scholar

[33]

Z. Yosida and Y. Giga, Remarks on spectra of operator rot,, Math. Zeitschrift, 204 (1990), 235.  doi: 10.1007/BF02570870.  Google Scholar

show all references

References:
[1]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975).   Google Scholar

[2]

G. Alessandrini, A. Douglis and E. Fabes, An approximate layering method for the Navier-Stokes equations in bounded cylinders,, Ann. Mat. Pura Appl., 135 (1983), 329.  doi: 10.1007/BF01781075.  Google Scholar

[3]

H. Amann, Linear and Quasilinear Parabolic Problems,, Vol. 1, (1995).  doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[4]

M. Bause, Optimale Konvergenzraten F"ur voll Diskretisierte Navier-Stokes Approximationen H"oherer Ordnung in Gebieten mit Lipschitz-Rand,, Dissertation, (1997).   Google Scholar

[5]

J. T. Beale and A. Majda, Rates of convergence for viscous splitting of the Navier-Stokes equations,, Math. Comp., 37 (1981), 243.  doi: 10.1090/S0025-5718-1981-0628693-0.  Google Scholar

[6]

J. T. Beale and C. Greengard, Convergence of Euler-Stokes splitting of the Navier-Stokes equations,, IBM Research Report RC 18072 (1992), 47 (1992), 1083.  doi: 10.1002/cpa.3160470805.  Google Scholar

[7]

G. Benfatto and M. Pulvirenti, Generation of vorticity near the boundary in planar Navier-Stokes flows,, Commun. Math. Phys., 96 (1984), 59.  doi: 10.1007/BF01217348.  Google Scholar

[8]

G. Benfatto and M. Pulvirenti, Convergence of Chorin-Marsden product formula in the half-plane,, Commun. Math. Phys., 106 (1986), 427.  doi: 10.1007/BF01207255.  Google Scholar

[9]

L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes,, Rend. Mat. Sem. Univ. Padova, 31 (1961), 308.   Google Scholar

[10]

A. J. Chorin, Numerical study of slightly viscous flow,, J. Fluid Mech., 57 (1973), 785.  doi: 10.1017/S0022112073002016.  Google Scholar

[11]

A. J. Chorin, Vortex sheet approximation of boundary layers,, J. Comput. Phys., 27 (1978), 428.  doi: 10.1016/0021-9991(78)90019-0.  Google Scholar

[12]

A. J. Chorin, T. J. R. Hughes, M. F. McCracken and J. E. Marsden, Product formulas and numerical algorithms,, Comm. Pure Appl. Math., 31 (1978), 205.  doi: 10.1002/cpa.3160310205.  Google Scholar

[13]

P. Deuring and W. von Wahl, Strong solutions of the Navier-Stokes system in Lipschitz bounded domains,, Math. Nachr., 171 (1995), 111.  doi: 10.1002/mana.19951710108.  Google Scholar

[14]

A. Douglis and E. Fabes, A layering method for viscous, incompressible $L_p$ flows occupying $\mathbbR^n$,, Research Notes in Math., 108 (1984).   Google Scholar

[15]

D. Fujiwara and H. Morimoto, An $L_r$-theorem of the Helmholtz decomposition of vector fields,, J. Fac. Sci. Tokyo U., 24 (1977), 685.   Google Scholar

[16]

M.J. Lighthill, Introductions. Real and ideal fluids, II. Introduction. Boundary layer theory,, in Laminar Boundary Layers, (1963), 1.   Google Scholar

[17]

J. Marsden, On product formulas for nonlinear semi-groups,, J. Funct. Anal., 13 (1973), 51.  doi: 10.1016/0022-1236(73)90066-9.  Google Scholar

[18]

J. Marsden, Applications of Global Analysis in Mathematical Physics,, Publish/Perish, (1974).   Google Scholar

[19]

V. G. Maz'ja and B. A. Plamenevskii, First boundary value problem for the equation of hydrodynamic in a domain with a piecewise-smooth boundary,, J. Soviet. Math., (1983), 777.  doi: 10.1007/BF01094440.  Google Scholar

[20]

O. Pironneau, On the transport-diffusion algorithm and its applications to the Navier-Stokes equation,, Numer. Math., 38 (1982), 309.  doi: 10.1007/BF01396435.  Google Scholar

[21]

L. Prandtl, Die Entstehung von Wirbeln in einer Flüssigkeit mit kleiner Reibung,, Zeitschrift für Flugtechnik und Motorluftschiffahrt, 18 (1927), 489.   Google Scholar

[22]

L. Prandtl, The generation of vortices in fluids of small viscosity,, Journal of the Royal Aeronautical Society, 31 (1927), 720.   Google Scholar

[23]

R. Rautmann, Ein Vektorpotentialmodell für die Wirbelbildung am Rand umströmter Körper,, Z. Angew. Math. Mech., 68 (1988), 383.  doi: 10.1002/zamm.19880680823.  Google Scholar

[24]

R. Rautmann, Eine konvergente Produktformel für linearisierte Navier-Stokes Probleme,, Z. Angew. Math. Mech., 69 (1989).   Google Scholar

[25]

R. Rautmann, $H^2$-Convergent Linearizations to the Navier-Stokes Initial Value Problem,, in Proc. Intern Conf. on New Developments in Partial Differential Equations and Applications to Mathematical Physics, (1992), 14.   Google Scholar

[26]

R. Rautmann and K. Masuda, $H^2$-Convergent Approximation Schemes to the Navier-Stokes Equations,, Comm. Math. Univ. Sancti Pauli, 43 (1994), 55.   Google Scholar

[27]

H. Sohr, The Navier-Stokes Equations,, Birkhäuser, (2001).   Google Scholar

[28]

V. A. Solonnikow, On the Stokes equations in domains with non-smooth boundaries and on viscous incompressible flow with a free surface,, in Nonlinear partial differential equations and their applications, (1982), 340.   Google Scholar

[29]

L. Stupelis, Navier-Stokes Equations in Irregular Domains,, Kluwer Academic Publishers, (1995).   Google Scholar

[30]

W. von Wahl, The equations of Navier-Stokes and Abstract Parabolic Equations,, Vieweg, (1985).   Google Scholar

[31]

L.-A. Ying, Viscous splitting method for the unbounded problem of the Navier-Stokes equations,, Math. Comp., 55 (1990), 89.  doi: 10.1090/S0025-5718-1990-1023053-0.  Google Scholar

[32]

L.-A. Ying and P. Zhang, Vortex Methods,, Science Press, (1997).   Google Scholar

[33]

Z. Yosida and Y. Giga, Remarks on spectra of operator rot,, Math. Zeitschrift, 204 (1990), 235.  doi: 10.1007/BF02570870.  Google Scholar

[1]

Sergio Conti, Georg Dolzmann. Optimal laminates in single-slip elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 1-16. doi: 10.3934/dcdss.2020302

[2]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[3]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[4]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[5]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

[6]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[7]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[8]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[9]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[10]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[11]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[12]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[13]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[14]

Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2021, 17 (1) : 1-28. doi: 10.3934/jimo.2019096

[15]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[16]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[17]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[18]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[19]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[20]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]