Citation: |
[1] |
H. Abidi and T. Hmidi, On the global well-posedness of the critical quasi-geostrophic equation, SIAM J. Math. Anal., 40 (2008), 167-185.doi: 10.1137/070682319. |
[2] |
G. R. Baker, X. Li and A. C. Morlet, Analytic structure of two 1D-transport equations with nonlocal fluxes, Physics D, 91 (1996), 349-375.doi: 10.1016/0167-2789(95)00271-5. |
[3] |
P. Balodis and A. Córdoba, An inequality for Riesz transforms implying blow-up for some nonlinear and nonlocal transport equations, Advances in Mathematics, 214 (2007), 1-39.doi: 10.1016/j.aim.2006.07.021. |
[4] |
P. Biler and W. A. Woyczyński, Global and exploding solutions for nonlocal quadratic evolution problems, SIAM J. Appl. Math., 59 (1998), 845-869.doi: 10.1137/S0036139996313447. |
[5] |
L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math. (2), 171 (2010), 1903-1930.doi: 10.4007/annals.2010.171.1903. |
[6] |
L. Caffarelli and J. Vazquez, Nonlinear porous medium flow with fractional potential pressure, Arch. Rational Mech. Anal., 202 (2011), 537-565.doi: 10.1007/s00205-011-0420-4. |
[7] |
A. Castro and D. Córdoba, Global existence, singularities and ill-posedness for a nonlocal flux, Advance in Mathematics, 219 (2008), 1916-1936.doi: 10.1016/j.aim.2008.07.015. |
[8] |
A. Castro, D. Córdoba, F. Gancedo and R. Orive, Incompressible flow in porous media with fractional diffusion, Nonlinearity, 22 (2009), 1791-1815.doi: 10.1088/0951-7715/22/8/002. |
[9] |
D. Chae, A. Córdoba, D. Córdoba and M. A. Fontelos, Finite time singularities in a 1D model of the quasi-geostrophis equations, Advance in Mathematics, 194 (2005), 203-223.doi: 10.1016/j.aim.2004.06.004. |
[10] |
D. Chae and J. Lee, Global well-posedness in the super-critical dissipative quasi-geostrophic equations, Comm. Math. Phys., 233 (2003), 297-311. |
[11] |
P. Constantin, A. Majda and E. Tabak, Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar, Nonlinearity, 7 (1994), 1498-1533.doi: 10.1088/0951-7715/7/6/001. |
[12] |
P. Constantin and J. Wu, Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal., 30 (1999), 937-948.doi: 10.1137/S0036141098337333. |
[13] |
A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys., 249 (2004), 511-528.doi: 10.1007/s00220-004-1055-1. |
[14] |
A. P. Calderon and A Zygmund, On singular integrals, American J of Math., 78 (1956), 289-309.doi: 10.2307/2372517. |
[15] |
H. Dong and D. Du, Global well-posedness and a dacay estimate for the critical dissipative quasi-geostrophic equation in the whole space, Discrete Contin. Dyn. Syst., 21 (2008), 1095-1101.doi: 10.3934/dcds.2008.21.1095. |
[16] |
A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math., 167 (2007), 445-453.doi: 10.1007/s00222-006-0020-3. |
[17] |
N. Ju, The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations, Commun. Math. Phys., 255 (2005), 161-181.doi: 10.1007/s00220-004-1256-7. |
[18] |
T. Laurent, Local and global existence for an aggregation equation, Comm. in Parti. Diff. Equa., 32 (2007), 1941-1964.doi: 10.1080/03605300701318955. |
[19] |
D. Li and J. Rodrigo, Wellposedness and regularity of solutions of an aggregation equation, Rev. Mat. Iberoam., 26 (2010), 261-294.doi: 10.4171/RMI/601. |
[20] |
D. Li, J. Rodrigo and X. Zhang, Exploding solutions for a nonlocal quadratic evolution problem, Rev. Mat. Iberoam., 26 (2010), 295-332.doi: 10.4171/RMI/602. |
[21] |
M. Schonbek, Decay of solutions to parabolic conservation laws, Commun. Partial Diff Eqns., 5 (1980), 449-473.doi: 10.1080/0360530800882145. |
[22] |
M. Schonbek, $L^2$ decay for weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 88 (1985), 209-222.doi: 10.1007/BF00752111. |
[23] |
M. Schonbek and T. Schonbek, Asymptotic behavior to dissipative quasi-geostrophic flows, SIAM J. Math. Anal., 35 (2003), 357-375.doi: 10.1137/S0036141002409362. |
[24] |
E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970. |
[25] |
M. Taylor, Pseudodifferential Operators and Nonlinear P.D.E', Birkhäuser, 1993. |
[26] |
J. Wu, Dissipative quasi-geostrophic equations with $L^p$ data, Electron J. Differ. Eqns., 2001, (2001), 1-13. |
[27] |
J. Wu, Global solutions of the 2D dissipative quasi-geostrophic in Besov spaces, SIAM J. Math. Anal., 36 (2005), 1014-1030.doi: 10.1137/S0036141003435576. |
[28] |
J. Wu, The Quasi-geostrophic equations and its two regularizations, Comm. Partial Differ. Eqns., 27 (2002), 1161-1181.doi: 10.1081/PDE-120004898. |
[29] |
X. Yu, Remarks on the global regularity for the super-critical 2D dissipative quasi-geostrophic, J. Math. Anal. Appl., 339 (2008), 359-371.doi: 10.1016/j.jmaa.2007.06.064. |
[30] |
Y. Zhou, Asymptotic behaviour of the solutions to the 2D dissipative quasi-geostrophic flows, Nonlinearity, 21 (2008), 2061-2071.doi: 10.1088/0951-7715/21/9/008. |