February  2014, 7(1): 113-125. doi: 10.3934/dcdss.2014.7.113

A mathematical model of carbon dioxide transport in concrete carbonation process

1. 

Natural and Physical Sciences, Tomakomai National College of Technology, 443, Nishikioka, Tomakomai-shi, Hokkaido, 059-1275, Japan

Received  February 2012 Revised  October 2012 Published  July 2013

In this paper we prove the existence of a solution for a mathematical model of carbon dioxide transport in concrete carbonation process. This model is a parabolic type equation with a nonlinear perturbation such that a coefficient of the time derivative contains a non-local term depending on the unknown function itself.
Citation: Kota Kumazaki. A mathematical model of carbon dioxide transport in concrete carbonation process. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 113-125. doi: 10.3934/dcdss.2014.7.113
References:
[1]

T. Aiki and K. Kumazaki, Mathematical model for hysteresis phenomenon in moisture transport in concrete carbonation process,, Phys. B, 407 (2012), 1424.  doi: 10.1016/j.physb.2011.10.016.  Google Scholar

[2]

T. Aiki and K. Kumazaki, Well-posedness of a mathematical model for moisture transport appearing in concrete carbonation process,, Adv. Math. Sci. Appl., 21 (2011), 361.   Google Scholar

[3]

T. Aiki and A. Muntean, A free boundary problem for concrete carbonation: Rigorous justification of $\sqrtt$ -law of propagation,, to appear in Interfaces and Free Boundaries, (2013).   Google Scholar

[4]

T. Aiki and A. Muntean, Large time behavior of solutions to concrete carbonation problem,, Commun. Pure Appl. Anal., 9 (2010), 1117.  doi: 10.3934/cpaa.2010.9.1117.  Google Scholar

[5]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasi-Linear Equations of Parabolic Type,", Transl. Math. Monogr., 23 (1968).   Google Scholar

[6]

K. Maekawa, R. Chaube and T. Kishi, "Modeling of Concrete Carbonation,", Taylor and Francis, (1999).   Google Scholar

[7]

K. Maekawa, T. Ishida and T. Kishi, Multi-scale modeling of concrete performance,, J. Adv. Concr. Technol., 1 (2003), 91.  doi: 10.3151/jact.1.91.  Google Scholar

[8]

A. Muntean and M. Böhm, A moving boundary problem for concrete carbonation: Global existence and uniqueness of solutions,, J. Math. Anal. Appl., 350 (2009), 234.  doi: 10.1016/j.jmaa.2008.09.044.  Google Scholar

show all references

References:
[1]

T. Aiki and K. Kumazaki, Mathematical model for hysteresis phenomenon in moisture transport in concrete carbonation process,, Phys. B, 407 (2012), 1424.  doi: 10.1016/j.physb.2011.10.016.  Google Scholar

[2]

T. Aiki and K. Kumazaki, Well-posedness of a mathematical model for moisture transport appearing in concrete carbonation process,, Adv. Math. Sci. Appl., 21 (2011), 361.   Google Scholar

[3]

T. Aiki and A. Muntean, A free boundary problem for concrete carbonation: Rigorous justification of $\sqrtt$ -law of propagation,, to appear in Interfaces and Free Boundaries, (2013).   Google Scholar

[4]

T. Aiki and A. Muntean, Large time behavior of solutions to concrete carbonation problem,, Commun. Pure Appl. Anal., 9 (2010), 1117.  doi: 10.3934/cpaa.2010.9.1117.  Google Scholar

[5]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasi-Linear Equations of Parabolic Type,", Transl. Math. Monogr., 23 (1968).   Google Scholar

[6]

K. Maekawa, R. Chaube and T. Kishi, "Modeling of Concrete Carbonation,", Taylor and Francis, (1999).   Google Scholar

[7]

K. Maekawa, T. Ishida and T. Kishi, Multi-scale modeling of concrete performance,, J. Adv. Concr. Technol., 1 (2003), 91.  doi: 10.3151/jact.1.91.  Google Scholar

[8]

A. Muntean and M. Böhm, A moving boundary problem for concrete carbonation: Global existence and uniqueness of solutions,, J. Math. Anal. Appl., 350 (2009), 234.  doi: 10.1016/j.jmaa.2008.09.044.  Google Scholar

[1]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[2]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[3]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[4]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[5]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[6]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[7]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[8]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[9]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[10]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[11]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[12]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[13]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[14]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[15]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHum approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[16]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[17]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[18]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[19]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[20]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]