• Previous Article
    Multiple positive periodic solutions to a predator-prey model with Leslie-Gower Holling-type II functional response and harvesting terms
  • DCDS-S Home
  • This Issue
  • Next Article
    Alternate steady states for classes of reaction diffusion models on exterior domains
December  2014, 7(6): 1193-1202. doi: 10.3934/dcdss.2014.7.1193

Existence of $L^p$-solutions for a semilinear wave equation with non-monotone nonlinearity

1. 

Departmento de Matemáticas, Universidad Nacional de Colombia, Bogotá, Colombia, Colombia

2. 

Department of Mathematics, Harvey Mudd College, Claremont, CA 91711, United States

3. 

Department of Mathematics, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia

Received  April 2013 Revised  November 2013 Published  June 2014

For Dirichlet-periodic and double periodic boundary conditions, we prove the existence of solutions to a forced semilinear wave equation with large forcing terms not flat on characteristics. The nonlinearity is assumed to be non-monotone, asymptotically linear, and not resonanant. We prove that the solutions are in $L^{p}$, $(p\geq 2)$, when the forcing term is in $L^{p}$. This is optimal; even in the linear case there are $L^p$ forcing terms for which the solutions are only in $L^p$. Our results extend those in [9] where the forcing term is assumed to be in $L_{\infty}$, and are in contrast with those in [6] where the non-existence of continuous solutions is established for $C^{\infty}$ forcing terms flat on characteristics. 200 words.
Citation: José Caicedo, Alfonso Castro, Rodrigo Duque, Arturo Sanjuán. Existence of $L^p$-solutions for a semilinear wave equation with non-monotone nonlinearity. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1193-1202. doi: 10.3934/dcdss.2014.7.1193
References:
[1]

P. Bates and A. Castro, Existence and uniqueness for a variational hyperbolic system without resonance,, Nonlinear Analysis TMA, 4 (1980), 1151. doi: 10.1016/0362-546X(80)90024-3. Google Scholar

[2]

M. Berti and L. Biasco, Forced vibrations of wave equations with non-monotone nonlinearities,, Ann. Inst. H. Poincaré Anal. Non Lineaire, 23 (2006), 439. doi: 10.1016/j.anihpc.2005.05.004. Google Scholar

[3]

H. Brezis and L. Nirenberg, Characterizations of the ranges of some nonlinear operators and applications to boundary value problems,, Annali della Scuola Norm. Sup. di Pisa, 5 (1978), 225. Google Scholar

[4]

R. Brooks and K. Schmitt, The contraction mapping principle and some applications,, Electron. J. Diff. Eqns. Monograph, 90 (2009). Google Scholar

[5]

J. Caicedo and A. Castro, A semilinear wave equation with derivative of nonlinearity containing multiple eigenvalues of infinite multiplicity,, Contemp. Math., 208 (1997), 111. doi: 10.1090/conm/208/02737. Google Scholar

[6]

J. Caicedo and A. Castro, A semilinear wave equation with smooth data and no resonance having no continuous solution,, Discrete and Continuous Dynamical Systems, 24 (2009), 653. doi: 10.3934/dcds.2009.24.653. Google Scholar

[7]

J. Caicedo, A. Castro and R. Duque, Existence of solutions for a wave equation with non-monotone nonlinearity and a small parameter,, Milan Journal of Mathematics, 79 (2011), 207. doi: 10.1007/s00032-011-0154-7. Google Scholar

[8]

A. Castro, Semilinear equations with discrete spectrum,, Contemporary Mathematics, 357 (2004), 1. doi: 10.1090/conm/357/06509. Google Scholar

[9]

A. Castro and B. Preskill, Existence of solutions for a semilinear wave equation with non-monotone nonlinearity,, Discrete and Continuous Dynamical Systems, 28 (2010), 649. doi: 10.3934/dcds.2010.28.649. Google Scholar

[10]

A. Castro and S. Unsurangsie, A semilinear wave equation with nonmonotone nonlinearity,, Pacific J. Math., 132 (1988), 215. doi: 10.2140/pjm.1988.132.215. Google Scholar

[11]

D. Gilbarg and N. Trudinger, Eliiptic Partial Differential Equations of Second Order,, Springer Verlag, (1997). Google Scholar

[12]

H. Hofer, On the range of a wave operator with nonmonotone nonlinearity,, Math. Nachr., 106 (1982), 327. doi: 10.1002/mana.19821060128. Google Scholar

[13]

J. Mawhin, Periodic solutions of some semilinear wave equations and systems: A survey,, Chaos, 5 (1995), 1651. doi: 10.1016/0960-0779(94)00169-Q. Google Scholar

[14]

P. J. McKenna, On solutions of a nonlinear wave equation when the ratio of the period to the length of the interval is irrational,, Proc. Amer. Math. Soc., 93 (1985), 59. doi: 10.1090/S0002-9939-1985-0766527-X. Google Scholar

[15]

P. Rabinowitz, Large amplitude time periodic solutions of a semilinear wave equation,, Comm. Pure Appl. Math., 37 (1984), 189. doi: 10.1002/cpa.3160370203. Google Scholar

[16]

M. Willem, Density of the range of potential operators,, Proc. Amer. Math. Soc., 83 (1981), 341. doi: 10.1090/S0002-9939-1981-0624926-7. Google Scholar

show all references

References:
[1]

P. Bates and A. Castro, Existence and uniqueness for a variational hyperbolic system without resonance,, Nonlinear Analysis TMA, 4 (1980), 1151. doi: 10.1016/0362-546X(80)90024-3. Google Scholar

[2]

M. Berti and L. Biasco, Forced vibrations of wave equations with non-monotone nonlinearities,, Ann. Inst. H. Poincaré Anal. Non Lineaire, 23 (2006), 439. doi: 10.1016/j.anihpc.2005.05.004. Google Scholar

[3]

H. Brezis and L. Nirenberg, Characterizations of the ranges of some nonlinear operators and applications to boundary value problems,, Annali della Scuola Norm. Sup. di Pisa, 5 (1978), 225. Google Scholar

[4]

R. Brooks and K. Schmitt, The contraction mapping principle and some applications,, Electron. J. Diff. Eqns. Monograph, 90 (2009). Google Scholar

[5]

J. Caicedo and A. Castro, A semilinear wave equation with derivative of nonlinearity containing multiple eigenvalues of infinite multiplicity,, Contemp. Math., 208 (1997), 111. doi: 10.1090/conm/208/02737. Google Scholar

[6]

J. Caicedo and A. Castro, A semilinear wave equation with smooth data and no resonance having no continuous solution,, Discrete and Continuous Dynamical Systems, 24 (2009), 653. doi: 10.3934/dcds.2009.24.653. Google Scholar

[7]

J. Caicedo, A. Castro and R. Duque, Existence of solutions for a wave equation with non-monotone nonlinearity and a small parameter,, Milan Journal of Mathematics, 79 (2011), 207. doi: 10.1007/s00032-011-0154-7. Google Scholar

[8]

A. Castro, Semilinear equations with discrete spectrum,, Contemporary Mathematics, 357 (2004), 1. doi: 10.1090/conm/357/06509. Google Scholar

[9]

A. Castro and B. Preskill, Existence of solutions for a semilinear wave equation with non-monotone nonlinearity,, Discrete and Continuous Dynamical Systems, 28 (2010), 649. doi: 10.3934/dcds.2010.28.649. Google Scholar

[10]

A. Castro and S. Unsurangsie, A semilinear wave equation with nonmonotone nonlinearity,, Pacific J. Math., 132 (1988), 215. doi: 10.2140/pjm.1988.132.215. Google Scholar

[11]

D. Gilbarg and N. Trudinger, Eliiptic Partial Differential Equations of Second Order,, Springer Verlag, (1997). Google Scholar

[12]

H. Hofer, On the range of a wave operator with nonmonotone nonlinearity,, Math. Nachr., 106 (1982), 327. doi: 10.1002/mana.19821060128. Google Scholar

[13]

J. Mawhin, Periodic solutions of some semilinear wave equations and systems: A survey,, Chaos, 5 (1995), 1651. doi: 10.1016/0960-0779(94)00169-Q. Google Scholar

[14]

P. J. McKenna, On solutions of a nonlinear wave equation when the ratio of the period to the length of the interval is irrational,, Proc. Amer. Math. Soc., 93 (1985), 59. doi: 10.1090/S0002-9939-1985-0766527-X. Google Scholar

[15]

P. Rabinowitz, Large amplitude time periodic solutions of a semilinear wave equation,, Comm. Pure Appl. Math., 37 (1984), 189. doi: 10.1002/cpa.3160370203. Google Scholar

[16]

M. Willem, Density of the range of potential operators,, Proc. Amer. Math. Soc., 83 (1981), 341. doi: 10.1090/S0002-9939-1981-0624926-7. Google Scholar

[1]

José F. Caicedo, Alfonso Castro. A semilinear wave equation with smooth data and no resonance having no continuous solution. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 653-658. doi: 10.3934/dcds.2009.24.653

[2]

Asma Azaiez. Refined regularity for the blow-up set at non characteristic points for the vector-valued semilinear wave equation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2397-2408. doi: 10.3934/cpaa.2019108

[3]

Tong Li, Hailiang Liu. Critical thresholds in a relaxation system with resonance of characteristic speeds. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 511-521. doi: 10.3934/dcds.2009.24.511

[4]

Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559

[5]

Maurizio Grasselli, Vittorino Pata. On the damped semilinear wave equation with critical exponent. Conference Publications, 2003, 2003 (Special) : 351-358. doi: 10.3934/proc.2003.2003.351

[6]

Martin Michálek, Dalibor Pražák, Jakub Slavík. Semilinear damped wave equation in locally uniform spaces. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1673-1695. doi: 10.3934/cpaa.2017080

[7]

Zhijian Yang, Zhiming Liu, Na Feng. Longtime behavior of the semilinear wave equation with gentle dissipation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6557-6580. doi: 10.3934/dcds.2016084

[8]

Mohamed Ouzahra. Controllability of the semilinear wave equation governed by a multiplicative control. Evolution Equations & Control Theory, 2019, 8 (4) : 669-686. doi: 10.3934/eect.2019039

[9]

Zhiguo Wang, Yiqian Wang, Daxiong Piao. A new method for the boundedness of semilinear Duffing equations at resonance. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3961-3991. doi: 10.3934/dcds.2016.36.3961

[10]

Jiabao Su, Zhaoli Liu. A bounded resonance problem for semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 431-445. doi: 10.3934/dcds.2007.19.431

[11]

Patrick Martinez, Judith Vancostenoble. Exact controllability in "arbitrarily short time" of the semilinear wave equation. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 901-924. doi: 10.3934/dcds.2003.9.901

[12]

Alfonso Castro, Benjamin Preskill. Existence of solutions for a semilinear wave equation with non-monotone nonlinearity. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 649-658. doi: 10.3934/dcds.2010.28.649

[13]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[14]

Andrzej Nowakowski. Variational approach to stability of semilinear wave equation with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2603-2616. doi: 10.3934/dcdsb.2014.19.2603

[15]

José Caicedo, Alfonso Castro, Arturo Sanjuán. Bifurcation at infinity for a semilinear wave equation with non-monotone nonlinearity. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1857-1865. doi: 10.3934/dcds.2017078

[16]

Nikos I. Kavallaris, Andrew A. Lacey, Christos V. Nikolopoulos, Dimitrios E. Tzanetis. On the quenching behaviour of a semilinear wave equation modelling MEMS technology. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1009-1037. doi: 10.3934/dcds.2015.35.1009

[17]

Alan Compelli, Rossen Ivanov. Benjamin-Ono model of an internal wave under a flat surface. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4519-4532. doi: 10.3934/dcds.2019185

[18]

Elena Braverman, Karel Hasik, Anatoli F. Ivanov, Sergei I. Trofimchuk. A cyclic system with delay and its characteristic equation. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-29. doi: 10.3934/dcdss.2020001

[19]

Shujie Li, Zhitao Zhang. Multiple solutions theorems for semilinear elliptic boundary value problems with resonance at infinity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 489-493. doi: 10.3934/dcds.1999.5.489

[20]

Jinlong Bai, Desheng Li, Chunqiu Li. A note on multiplicity of solutions near resonance of semilinear elliptic equations. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3351-3365. doi: 10.3934/cpaa.2019151

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (1)

[Back to Top]