-
Previous Article
Multiple positive periodic solutions to a predator-prey model with Leslie-Gower Holling-type II functional response and harvesting terms
- DCDS-S Home
- This Issue
-
Next Article
Alternate steady states for classes of reaction diffusion models on exterior domains
Existence of $L^p$-solutions for a semilinear wave equation with non-monotone nonlinearity
1. | Departmento de Matemáticas, Universidad Nacional de Colombia, Bogotá, Colombia, Colombia |
2. | Department of Mathematics, Harvey Mudd College, Claremont, CA 91711, United States |
3. | Department of Mathematics, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia |
References:
[1] |
P. Bates and A. Castro, Existence and uniqueness for a variational hyperbolic system without resonance, Nonlinear Analysis TMA, 4 (1980), 1151-1156.
doi: 10.1016/0362-546X(80)90024-3. |
[2] |
M. Berti and L. Biasco, Forced vibrations of wave equations with non-monotone nonlinearities, Ann. Inst. H. Poincaré Anal. Non Lineaire, 23 (2006), 439-474.
doi: 10.1016/j.anihpc.2005.05.004. |
[3] |
H. Brezis and L. Nirenberg, Characterizations of the ranges of some nonlinear operators and applications to boundary value problems, Annali della Scuola Norm. Sup. di Pisa, 5 (1978), 225-236. |
[4] |
R. Brooks and K. Schmitt, The contraction mapping principle and some applications, Electron. J. Diff. Eqns. Monograph, 90 (2009), 90 pp. |
[5] |
J. Caicedo and A. Castro, A semilinear wave equation with derivative of nonlinearity containing multiple eigenvalues of infinite multiplicity, Contemp. Math., 208 (1997), 111-132.
doi: 10.1090/conm/208/02737. |
[6] |
J. Caicedo and A. Castro, A semilinear wave equation with smooth data and no resonance having no continuous solution, Discrete and Continuous Dynamical Systems, 24 (2009), 653-658.
doi: 10.3934/dcds.2009.24.653. |
[7] |
J. Caicedo, A. Castro and R. Duque, Existence of solutions for a wave equation with non-monotone nonlinearity and a small parameter, Milan Journal of Mathematics, 79 (2011), 207-220.
doi: 10.1007/s00032-011-0154-7. |
[8] |
A. Castro, Semilinear equations with discrete spectrum, Contemporary Mathematics, 357 (2004), 1-16.
doi: 10.1090/conm/357/06509. |
[9] |
A. Castro and B. Preskill, Existence of solutions for a semilinear wave equation with non-monotone nonlinearity, Discrete and Continuous Dynamical Systems, Series A, 28 (2010), 649-658.
doi: 10.3934/dcds.2010.28.649. |
[10] |
A. Castro and S. Unsurangsie, A semilinear wave equation with nonmonotone nonlinearity, Pacific J. Math., 132 (1988), 215-225.
doi: 10.2140/pjm.1988.132.215. |
[11] |
D. Gilbarg and N. Trudinger, Eliiptic Partial Differential Equations of Second Order, Springer Verlag, 1997. |
[12] |
H. Hofer, On the range of a wave operator with nonmonotone nonlinearity, Math. Nachr., 106 (1982), 327-340.
doi: 10.1002/mana.19821060128. |
[13] |
J. Mawhin, Periodic solutions of some semilinear wave equations and systems: A survey, Chaos, Solitons and Fractals, 5 (1995), 1651-1669.
doi: 10.1016/0960-0779(94)00169-Q. |
[14] |
P. J. McKenna, On solutions of a nonlinear wave equation when the ratio of the period to the length of the interval is irrational, Proc. Amer. Math. Soc., 93 (1985), 59-64.
doi: 10.1090/S0002-9939-1985-0766527-X. |
[15] |
P. Rabinowitz, Large amplitude time periodic solutions of a semilinear wave equation, Comm. Pure Appl. Math., 37 (1984), 189-206.
doi: 10.1002/cpa.3160370203. |
[16] |
M. Willem, Density of the range of potential operators, Proc. Amer. Math. Soc., 83 (1981), 341-344.
doi: 10.1090/S0002-9939-1981-0624926-7. |
show all references
References:
[1] |
P. Bates and A. Castro, Existence and uniqueness for a variational hyperbolic system without resonance, Nonlinear Analysis TMA, 4 (1980), 1151-1156.
doi: 10.1016/0362-546X(80)90024-3. |
[2] |
M. Berti and L. Biasco, Forced vibrations of wave equations with non-monotone nonlinearities, Ann. Inst. H. Poincaré Anal. Non Lineaire, 23 (2006), 439-474.
doi: 10.1016/j.anihpc.2005.05.004. |
[3] |
H. Brezis and L. Nirenberg, Characterizations of the ranges of some nonlinear operators and applications to boundary value problems, Annali della Scuola Norm. Sup. di Pisa, 5 (1978), 225-236. |
[4] |
R. Brooks and K. Schmitt, The contraction mapping principle and some applications, Electron. J. Diff. Eqns. Monograph, 90 (2009), 90 pp. |
[5] |
J. Caicedo and A. Castro, A semilinear wave equation with derivative of nonlinearity containing multiple eigenvalues of infinite multiplicity, Contemp. Math., 208 (1997), 111-132.
doi: 10.1090/conm/208/02737. |
[6] |
J. Caicedo and A. Castro, A semilinear wave equation with smooth data and no resonance having no continuous solution, Discrete and Continuous Dynamical Systems, 24 (2009), 653-658.
doi: 10.3934/dcds.2009.24.653. |
[7] |
J. Caicedo, A. Castro and R. Duque, Existence of solutions for a wave equation with non-monotone nonlinearity and a small parameter, Milan Journal of Mathematics, 79 (2011), 207-220.
doi: 10.1007/s00032-011-0154-7. |
[8] |
A. Castro, Semilinear equations with discrete spectrum, Contemporary Mathematics, 357 (2004), 1-16.
doi: 10.1090/conm/357/06509. |
[9] |
A. Castro and B. Preskill, Existence of solutions for a semilinear wave equation with non-monotone nonlinearity, Discrete and Continuous Dynamical Systems, Series A, 28 (2010), 649-658.
doi: 10.3934/dcds.2010.28.649. |
[10] |
A. Castro and S. Unsurangsie, A semilinear wave equation with nonmonotone nonlinearity, Pacific J. Math., 132 (1988), 215-225.
doi: 10.2140/pjm.1988.132.215. |
[11] |
D. Gilbarg and N. Trudinger, Eliiptic Partial Differential Equations of Second Order, Springer Verlag, 1997. |
[12] |
H. Hofer, On the range of a wave operator with nonmonotone nonlinearity, Math. Nachr., 106 (1982), 327-340.
doi: 10.1002/mana.19821060128. |
[13] |
J. Mawhin, Periodic solutions of some semilinear wave equations and systems: A survey, Chaos, Solitons and Fractals, 5 (1995), 1651-1669.
doi: 10.1016/0960-0779(94)00169-Q. |
[14] |
P. J. McKenna, On solutions of a nonlinear wave equation when the ratio of the period to the length of the interval is irrational, Proc. Amer. Math. Soc., 93 (1985), 59-64.
doi: 10.1090/S0002-9939-1985-0766527-X. |
[15] |
P. Rabinowitz, Large amplitude time periodic solutions of a semilinear wave equation, Comm. Pure Appl. Math., 37 (1984), 189-206.
doi: 10.1002/cpa.3160370203. |
[16] |
M. Willem, Density of the range of potential operators, Proc. Amer. Math. Soc., 83 (1981), 341-344.
doi: 10.1090/S0002-9939-1981-0624926-7. |
[1] |
José F. Caicedo, Alfonso Castro. A semilinear wave equation with smooth data and no resonance having no continuous solution. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 653-658. doi: 10.3934/dcds.2009.24.653 |
[2] |
Asma Azaiez. Refined regularity for the blow-up set at non characteristic points for the vector-valued semilinear wave equation. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2397-2408. doi: 10.3934/cpaa.2019108 |
[3] |
Tong Li, Hailiang Liu. Critical thresholds in a relaxation system with resonance of characteristic speeds. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 511-521. doi: 10.3934/dcds.2009.24.511 |
[4] |
Xingni Tan, Fuqi Yin, Guihong Fan. Random exponential attractor for stochastic discrete long wave-short wave resonance equation with multiplicative white noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3153-3170. doi: 10.3934/dcdsb.2020055 |
[5] |
Mohamed Ouzahra. Controllability of the semilinear wave equation governed by a multiplicative control. Evolution Equations and Control Theory, 2019, 8 (4) : 669-686. doi: 10.3934/eect.2019039 |
[6] |
Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559 |
[7] |
Maurizio Grasselli, Vittorino Pata. On the damped semilinear wave equation with critical exponent. Conference Publications, 2003, 2003 (Special) : 351-358. doi: 10.3934/proc.2003.2003.351 |
[8] |
Martin Michálek, Dalibor Pražák, Jakub Slavík. Semilinear damped wave equation in locally uniform spaces. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1673-1695. doi: 10.3934/cpaa.2017080 |
[9] |
Zhijian Yang, Zhiming Liu, Na Feng. Longtime behavior of the semilinear wave equation with gentle dissipation. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6557-6580. doi: 10.3934/dcds.2016084 |
[10] |
Zhiguo Wang, Yiqian Wang, Daxiong Piao. A new method for the boundedness of semilinear Duffing equations at resonance. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3961-3991. doi: 10.3934/dcds.2016.36.3961 |
[11] |
Jiabao Su, Zhaoli Liu. A bounded resonance problem for semilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2007, 19 (2) : 431-445. doi: 10.3934/dcds.2007.19.431 |
[12] |
Patrick Martinez, Judith Vancostenoble. Exact controllability in "arbitrarily short time" of the semilinear wave equation. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 901-924. doi: 10.3934/dcds.2003.9.901 |
[13] |
Alfonso Castro, Benjamin Preskill. Existence of solutions for a semilinear wave equation with non-monotone nonlinearity. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 649-658. doi: 10.3934/dcds.2010.28.649 |
[14] |
Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307 |
[15] |
Andrzej Nowakowski. Variational approach to stability of semilinear wave equation with nonlinear boundary conditions. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2603-2616. doi: 10.3934/dcdsb.2014.19.2603 |
[16] |
José Caicedo, Alfonso Castro, Arturo Sanjuán. Bifurcation at infinity for a semilinear wave equation with non-monotone nonlinearity. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1857-1865. doi: 10.3934/dcds.2017078 |
[17] |
Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388 |
[18] |
Nikos I. Kavallaris, Andrew A. Lacey, Christos V. Nikolopoulos, Dimitrios E. Tzanetis. On the quenching behaviour of a semilinear wave equation modelling MEMS technology. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1009-1037. doi: 10.3934/dcds.2015.35.1009 |
[19] |
Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure and Applied Analysis, 2022, 21 (6) : 1857-1871. doi: 10.3934/cpaa.2021043 |
[20] |
Elena Braverman, Karel Hasik, Anatoli F. Ivanov, Sergei I. Trofimchuk. A cyclic system with delay and its characteristic equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (1) : 1-29. doi: 10.3934/dcdss.2020001 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]