\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Multiple positive periodic solutions to a predator-prey model with Leslie-Gower Holling-type II functional response and harvesting terms

Abstract Related Papers Cited by
  • In this paper, we study a delayed predator-prey model with the Leslie-Gower Holling-type II functional response and harvesting terms. The existence of multiple positive periodic solutions for the system and the permanence of the predator-prey model are obtained by means of the generalized Mawhin coincidence degree theory.
    Mathematics Subject Classification: Primary: 34C25, 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Z. Du and Y. Lv, Permanence and almost periodic solution of a Lotka-Volterra Model with mutual interference and time delays, Appl. Math. Model., 37 (2013), 1054-1068.doi: 10.1016/j.apm.2012.03.022.

    [2]

    R. E. Gaines and J. L. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Springer-Verlag, Berlin, 1977.

    [3]

    D. C. He, W. T. Huang and Q. J. Xu, The dynamic complexity of an impulsive Holling II predator-prey model with mutual interference, Appl. Math. Model, 34 (2010), 2654-2664.doi: 10.1016/j.apm.2009.12.003.

    [4]

    G. Hetzer, T. Nguyen and W. Shen, Coexistence and extinction in the Volterra-Lotka competition model with nonlocal dispersal, Commun. Pure Appl. Anal., 11 (2012), 1699-1722.doi: 10.3934/cpaa.2012.11.1699.

    [5]

    S. Hsu, T. Hwang and Y. Kuang, Global dynamics of a predator-prey model with hassell-varley type functional response, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 857-871.doi: 10.3934/dcdsb.2008.10.857.

    [6]

    H. Y. Jing and Z. Y. Yang, The impact of state feedback control on a predator-prey model with functional response, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 607-614.doi: 10.3934/dcdsb.2004.4.607.

    [7]

    Y. Kuang, Delay Differential Equations, with Applications in Population Dynamics, Academic Press, New York, 1993.

    [8]

    K. Lan and C. R. Zhu, Phase portraits of predator-prey systems with harvesting rates, Discrete Contin. Dyn. Syst., 32 (2012), 901-933.doi: 10.3934/dcds.2012.32.901.

    [9]

    H. Y. Li and Y. Takeuchi, Dynamics of the density dependent predator-prey system with Beddington-DeAngelis functional response, J. Math. Anal. Appl., 374 (2011), 644-654.doi: 10.1016/j.jmaa.2010.08.029.

    [10]

    A. J. Lotka, Elements of Physical Biology, Williams & Wilkins Co., Baltimore, 1925.

    [11]

    Y. Lv and Z. Du, Existence and global attractivity of a positive periodic solution to a Lotka-Volterra model with mutual interference and Holling III type functional response, Nonlinear Anal. (RWA), 12 (2011), 3654-3664.doi: 10.1016/j.nonrwa.2011.06.022.

    [12]

    A. F. Nindjin, M. A. Aziz-Alaoui and M. Cadivel, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with time delay, Nonlinear Anal. (RWA), 7 (2006), 1104-1118.doi: 10.1016/j.nonrwa.2005.10.003.

    [13]

    V. Volterra, Variazioni e fluttuazioni del numero d'individui in specie animali conviventi, Mem. Acad. Lincei Roma, 2 (1926), 31-113.

    [14]

    J. Y. Wang and Z. Feng, A non-autonomous competitive system with stage structure and distributed delays, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 1061-1080.doi: 10.1017/S0308210509000134.

    [15]

    L. L. Wang, Y. H. Fan and W. Gao, Periodic solutions in a delayed predator-prey model with nonmonotonic functional response, Rocky Mountain J. Math., 38 (2008), 1705-1719.doi: 10.1216/RMJ-2008-38-5-1705.

    [16]

    Z. Wang and J. Wu, Existence of positive periodic solutions for delayed ratio-dependent predator-prey system with stocking, Commun. Pure Appl. Anal., 5 (2006), 423-433.

    [17]

    F. Wei, Existence of multiple positive periodic solutions to a predator-prey system with harvesting terms and Holling III type functional response, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 2130-2138.doi: 10.1016/j.cnsns.2010.08.028.

    [18]

    J. Xia, Z. Liu, R. Yuan and S. Ruan, The effects of harvesting and time delay on predator-prey systems with Holling type II functional response, SIAM J. Appl. Math., 70 (2009), 1178-1200.doi: 10.1137/080728512.

    [19]

    Y. Zhu and K. Wang, Existence and global attractivity of positive periodic solution for a predator-prey model with modified Leslie-Gower Holling-type II schemes, J. Math. Anal. Appl., 384 (2011), 400-408.doi: 10.1016/j.jmaa.2011.05.081.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(164) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return