Citation: |
[1] |
Z. Du and Y. Lv, Permanence and almost periodic solution of a Lotka-Volterra Model with mutual interference and time delays, Appl. Math. Model., 37 (2013), 1054-1068.doi: 10.1016/j.apm.2012.03.022. |
[2] |
R. E. Gaines and J. L. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Springer-Verlag, Berlin, 1977. |
[3] |
D. C. He, W. T. Huang and Q. J. Xu, The dynamic complexity of an impulsive Holling II predator-prey model with mutual interference, Appl. Math. Model, 34 (2010), 2654-2664.doi: 10.1016/j.apm.2009.12.003. |
[4] |
G. Hetzer, T. Nguyen and W. Shen, Coexistence and extinction in the Volterra-Lotka competition model with nonlocal dispersal, Commun. Pure Appl. Anal., 11 (2012), 1699-1722.doi: 10.3934/cpaa.2012.11.1699. |
[5] |
S. Hsu, T. Hwang and Y. Kuang, Global dynamics of a predator-prey model with hassell-varley type functional response, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 857-871.doi: 10.3934/dcdsb.2008.10.857. |
[6] |
H. Y. Jing and Z. Y. Yang, The impact of state feedback control on a predator-prey model with functional response, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 607-614.doi: 10.3934/dcdsb.2004.4.607. |
[7] |
Y. Kuang, Delay Differential Equations, with Applications in Population Dynamics, Academic Press, New York, 1993. |
[8] |
K. Lan and C. R. Zhu, Phase portraits of predator-prey systems with harvesting rates, Discrete Contin. Dyn. Syst., 32 (2012), 901-933.doi: 10.3934/dcds.2012.32.901. |
[9] |
H. Y. Li and Y. Takeuchi, Dynamics of the density dependent predator-prey system with Beddington-DeAngelis functional response, J. Math. Anal. Appl., 374 (2011), 644-654.doi: 10.1016/j.jmaa.2010.08.029. |
[10] |
A. J. Lotka, Elements of Physical Biology, Williams & Wilkins Co., Baltimore, 1925. |
[11] |
Y. Lv and Z. Du, Existence and global attractivity of a positive periodic solution to a Lotka-Volterra model with mutual interference and Holling III type functional response, Nonlinear Anal. (RWA), 12 (2011), 3654-3664.doi: 10.1016/j.nonrwa.2011.06.022. |
[12] |
A. F. Nindjin, M. A. Aziz-Alaoui and M. Cadivel, Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with time delay, Nonlinear Anal. (RWA), 7 (2006), 1104-1118.doi: 10.1016/j.nonrwa.2005.10.003. |
[13] |
V. Volterra, Variazioni e fluttuazioni del numero d'individui in specie animali conviventi, Mem. Acad. Lincei Roma, 2 (1926), 31-113. |
[14] |
J. Y. Wang and Z. Feng, A non-autonomous competitive system with stage structure and distributed delays, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 1061-1080.doi: 10.1017/S0308210509000134. |
[15] |
L. L. Wang, Y. H. Fan and W. Gao, Periodic solutions in a delayed predator-prey model with nonmonotonic functional response, Rocky Mountain J. Math., 38 (2008), 1705-1719.doi: 10.1216/RMJ-2008-38-5-1705. |
[16] |
Z. Wang and J. Wu, Existence of positive periodic solutions for delayed ratio-dependent predator-prey system with stocking, Commun. Pure Appl. Anal., 5 (2006), 423-433. |
[17] |
F. Wei, Existence of multiple positive periodic solutions to a predator-prey system with harvesting terms and Holling III type functional response, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 2130-2138.doi: 10.1016/j.cnsns.2010.08.028. |
[18] |
J. Xia, Z. Liu, R. Yuan and S. Ruan, The effects of harvesting and time delay on predator-prey systems with Holling type II functional response, SIAM J. Appl. Math., 70 (2009), 1178-1200.doi: 10.1137/080728512. |
[19] |
Y. Zhu and K. Wang, Existence and global attractivity of positive periodic solution for a predator-prey model with modified Leslie-Gower Holling-type II schemes, J. Math. Anal. Appl., 384 (2011), 400-408.doi: 10.1016/j.jmaa.2011.05.081. |