December  2014, 7(6): 1215-1230. doi: 10.3934/dcdss.2014.7.1215

Mathematical analysis on an extended Rosenzweig-MacArthur model of tri-trophic food chain

1. 

Mathematics and Statistics Department, University of North Carolina Wilmington, Wilmington, NC 28403-5970, United States, United States

Received  February 2013 Revised  August 2013 Published  June 2014

In this paper, we study a new model as an extension of the Rosenzweig-MacArthur tritrophic food chain model in which the super-predator consumes both the predator and the prey. We first obtain the ultimate bounds and conditions for exponential convergence for these populations. We also find all possible equilibria and investigate their stability or instability in relation with all the ecological parameters. Our main focus is on the conditions for the existence, uniqueness and stability of a coexistence equilibrium. The complexity of the dynamics in this model is theoretically discussed and graphically demonstrated through various examples and numerical simulations.
Citation: Wei Feng, Nicole Rocco, Michael Freeze, Xin Lu. Mathematical analysis on an extended Rosenzweig-MacArthur model of tri-trophic food chain. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1215-1230. doi: 10.3934/dcdss.2014.7.1215
References:
[1]

M. Candaten and S. Rinaldi, Peak-to-peak dynamics in food chain models,, Theoretical Population Biology, 63 (2003), 257.   Google Scholar

[2]

L. Edelstein-Keshet, Mathematical Models in Biology,, McGraw-Hill, (1977).  doi: 10.1137/1.9780898719147.  Google Scholar

[3]

W. Feng, Permanence effect in a three-species food chain model,, Applicable Analysis, 54 (1994), 195.  doi: 10.1080/00036819408840277.  Google Scholar

[4]

W. Feng, C. V. Pao and X. Lu, Global attractors of reaction-diffusion systems modeling food chain populations with delays,, Commun. Pure Appl. Anal., 10 (2011), 1463.  doi: 10.3934/cpaa.2011.10.1463.  Google Scholar

[5]

O. De Feo and S. Rinaldi, Yield and dynamics of tritrophic food chains,, The American Naturalist, 150 (1997), 328.   Google Scholar

[6]

M. Haque, Ratio-dependent predator-prey models of interacting populations,, Bulletin of Mathematical Biology, 71 (2009), 430.  doi: 10.1007/s11538-008-9368-4.  Google Scholar

[7]

S.-B. Hsu, T.-W. Hwang and Y. Kuang, A ratio-dependent food chain model and its applications to biological control,, Mathematical Biosciences, 181 (2003), 55.  doi: 10.1016/S0025-5564(02)00127-X.  Google Scholar

[8]

Y. A. Kuznetsov, O. De Feo and S. Rinaldi, Belyakov homoclinic bifurcations in a tritrophic food chain model,, SIAM J. Appl. Math., 62 (2001), 462.  doi: 10.1137/S0036139900378542.  Google Scholar

[9]

Y. A. Kuznetsov and S. Rinaldi, Remarks on food chain dynamics,, Mathematical Biosciences, 134 (1996), 1.  doi: 10.1016/0025-5564(95)00104-2.  Google Scholar

[10]

Y. Kuang, Some mechanistically derived population models,, Mathematical Biosciences and Engineering, 4 (2007), 1.   Google Scholar

[11]

C. Lu, W. Feng and X. Lu, Long-term survival in a 3 -species ecological system,, Dynam. Contin. Discrete Impuls. Systems, 3 (1997), 199.   Google Scholar

[12]

S. Rinaldi, A. Gragnani and S. DeMonte, Remarks on antipredator behavior and food chain dynamics,, Theoretical Population Biology, 66 (2004), 277.  doi: 10.1016/j.tpb.2004.07.002.  Google Scholar

[13]

M. L. Rosenzweig and R. H. MacArthur, Graphical representation and stability conditions of predator-prey interactions,, American Naturalist, 97 (1963), 209.  doi: 10.1086/282272.  Google Scholar

[14]

D. M. Wrzosek, Limit cycles in predator-prey models,, Mathematical Biosciences, 98 (1990), 1.  doi: 10.1016/0025-5564(90)90009-N.  Google Scholar

show all references

References:
[1]

M. Candaten and S. Rinaldi, Peak-to-peak dynamics in food chain models,, Theoretical Population Biology, 63 (2003), 257.   Google Scholar

[2]

L. Edelstein-Keshet, Mathematical Models in Biology,, McGraw-Hill, (1977).  doi: 10.1137/1.9780898719147.  Google Scholar

[3]

W. Feng, Permanence effect in a three-species food chain model,, Applicable Analysis, 54 (1994), 195.  doi: 10.1080/00036819408840277.  Google Scholar

[4]

W. Feng, C. V. Pao and X. Lu, Global attractors of reaction-diffusion systems modeling food chain populations with delays,, Commun. Pure Appl. Anal., 10 (2011), 1463.  doi: 10.3934/cpaa.2011.10.1463.  Google Scholar

[5]

O. De Feo and S. Rinaldi, Yield and dynamics of tritrophic food chains,, The American Naturalist, 150 (1997), 328.   Google Scholar

[6]

M. Haque, Ratio-dependent predator-prey models of interacting populations,, Bulletin of Mathematical Biology, 71 (2009), 430.  doi: 10.1007/s11538-008-9368-4.  Google Scholar

[7]

S.-B. Hsu, T.-W. Hwang and Y. Kuang, A ratio-dependent food chain model and its applications to biological control,, Mathematical Biosciences, 181 (2003), 55.  doi: 10.1016/S0025-5564(02)00127-X.  Google Scholar

[8]

Y. A. Kuznetsov, O. De Feo and S. Rinaldi, Belyakov homoclinic bifurcations in a tritrophic food chain model,, SIAM J. Appl. Math., 62 (2001), 462.  doi: 10.1137/S0036139900378542.  Google Scholar

[9]

Y. A. Kuznetsov and S. Rinaldi, Remarks on food chain dynamics,, Mathematical Biosciences, 134 (1996), 1.  doi: 10.1016/0025-5564(95)00104-2.  Google Scholar

[10]

Y. Kuang, Some mechanistically derived population models,, Mathematical Biosciences and Engineering, 4 (2007), 1.   Google Scholar

[11]

C. Lu, W. Feng and X. Lu, Long-term survival in a 3 -species ecological system,, Dynam. Contin. Discrete Impuls. Systems, 3 (1997), 199.   Google Scholar

[12]

S. Rinaldi, A. Gragnani and S. DeMonte, Remarks on antipredator behavior and food chain dynamics,, Theoretical Population Biology, 66 (2004), 277.  doi: 10.1016/j.tpb.2004.07.002.  Google Scholar

[13]

M. L. Rosenzweig and R. H. MacArthur, Graphical representation and stability conditions of predator-prey interactions,, American Naturalist, 97 (1963), 209.  doi: 10.1086/282272.  Google Scholar

[14]

D. M. Wrzosek, Limit cycles in predator-prey models,, Mathematical Biosciences, 98 (1990), 1.  doi: 10.1016/0025-5564(90)90009-N.  Google Scholar

[1]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[2]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[3]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[4]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[5]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[6]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[7]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[8]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[9]

Yasemin Şengül. Viscoelasticity with limiting strain. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 57-70. doi: 10.3934/dcdss.2020330

[10]

Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020165

[11]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[12]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[13]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[14]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[15]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[16]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[17]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[18]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[19]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[20]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (274)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]