December  2014, 7(6): 1231-1257. doi: 10.3934/dcdss.2014.7.1231

Duffing-van der Pol-type oscillator systems

1. 

Department of Mathematics, University of Texas-Pan American, Edinburg, TX 78539

Received  January 2013 Revised  September 2013 Published  June 2014

In this paper, under certain parametric conditions we are concerned with the first integrals of the Duffing-van der Pol-type oscillator system, which include the van der Pol oscillator and the damped Duffing oscillator etc as particular cases. After applying the method of differentiable dynamics to analyze the bifurcation set and bifurcations of equilibrium points, we use the Lie symmetry reduction method to find two nontrivial infinitesimal generators and use them to construct canonical variables. Through the inverse transformations we obtain the first integrals of the original oscillator system under the given parametric conditions, and some particular cases such as the damped Duffing equation and the van der Pol oscillator system are included accordingly.
Citation: Zhaosheng Feng. Duffing-van der Pol-type oscillator systems. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1231-1257. doi: 10.3934/dcdss.2014.7.1231
References:
[1]

M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform,, SIAM, (1981).   Google Scholar

[2]

J. A. Almendral and M. A. F. Sanjuán, Integrability and symmetries for the Helmholtz oscillator with friction,, J. Phys. A (Math. Gen.), 36 (2003), 695.  doi: 10.1088/0305-4470/36/3/308.  Google Scholar

[3]

H. W. Broer, B. Krauskopf and G. Vegter, Global Analysis of Dynamical Systems,, Institue of Physics Publishing, (2001).  doi: 10.1887/0750308036.  Google Scholar

[4]

A. Canada, P. Drabek and A. Fonda, Handbook of Differential Equations: Ordinary Differential Equations,, Elsevier/North-Holland, (2006).   Google Scholar

[5]

V. K. Chandrasekar, M. Senthilvelan and M. Lakshmanan, On the complete integrability and linearization of certain second-order nonlinear ordinary differential equations,, Proc. R. Soc. Lond. Ser. A, 461 (2005), 2451.  doi: 10.1098/rspa.2005.1465.  Google Scholar

[6]

L. G. S. Duarte, S. E. S. Duarte, A. C. P. da Mota and J. E. F. Skea, Solving the second-order ordinary differential equations by extending the Prelle-Singer method,, J. Phys. A (Math. Gen.), 34 (2001), 3015.  doi: 10.1088/0305-4470/34/14/308.  Google Scholar

[7]

G. Duffing, Erzwungene Schwingungen bei Veränderlicher Eigenfrequenz,, F. Vieweg u. Sohn, (1918).   Google Scholar

[8]

Z. Feng, On traveling wave solutions of the Burgers-Korteweg-de Vries equation,, Nonlinearity, 20 (2007), 343.  doi: 10.1088/0951-7715/20/2/006.  Google Scholar

[9]

Z. Feng, The first-integral method to the Burgers-Korteweg-de Vries equation,, J. Phys. A (Math. Gen.), 35 (2002), 343.  doi: 10.1088/0305-4470/35/2/312.  Google Scholar

[10]

Z. Feng, G. Chen and S. B. Hsu, A qualitative study of the damped Duffing equation and applications,, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1097.  doi: 10.3934/dcdsb.2006.6.1097.  Google Scholar

[11]

Z. Feng and Q. G. Meng, Exact solution for a two-dimensional KdV-Burgers-type equation with nonlinear terms of any order,, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 285.   Google Scholar

[12]

Z. Feng, S. Zheng and D. Y. Gao, Traveling wave solutions to a reaction-diffusion equation,, Z. angew. Math. Phys., 60 (2009), 756.  doi: 10.1007/s00033-008-8092-0.  Google Scholar

[13]

G. Gao and Z. Feng, First integrals for the Duffng-van der Pol-type oscillator,, E. J. Diff. Equs., 19 (2010), 123.   Google Scholar

[14]

M. Gitterman, The Noisy Oscillator: The First Hundred Years, from Einstein until Now,, World Scientific Publishing, (2005).   Google Scholar

[15]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,, Springer-Verlag, (1990).   Google Scholar

[16]

M. W. Hirsch and S. Smale, Differential Equations, Dynamical Systems and Linear Algebra,, Academic Press, (1974).   Google Scholar

[17]

P. Holmes and D. Rand, Phase portraits and bifurcations of the non-linear oscillator: $\ddotx +(\alpha +\gamma x^2) \dotx + \beta x + \delta x^3=0$,, Int. J. Non-Linear Mech., 15 (1980), 449.   Google Scholar

[18]

P. E. Hydon, Symmetry Methods for Differential Equations,, Cambridge University Press, (2000).  doi: 10.1017/CBO9780511623967.  Google Scholar

[19]

E. L. Ince, Ordinary Differential Equations,, Dover Publications, (1944).   Google Scholar

[20]

D. W. Jordan and P. Smith, Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers,, Oxford University Press, (2007).   Google Scholar

[21]

M. Lakshmanan and S. Rajasekar, Nonlinear Dynamics: Integrability, Chaos and Patterns,, Springer Verlag, (2003).  doi: 10.1007/978-3-642-55688-3.  Google Scholar

[22]

P. J. Olver, Applications of Lie Groups to Differential Equations,, Springer Verlag, (1993).  doi: 10.1007/978-1-4612-4350-2.  Google Scholar

[23]

M. Prelle and M. Singer, Elementary first integrals of differential equations,, Trans. Am. Math. Soc., 279 (1983), 215.  doi: 10.1090/S0002-9947-1983-0704611-X.  Google Scholar

[24]

A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, 2nd edition,, CRC Press, (2003).   Google Scholar

[25]

A. D. Polyanin, V. F. Zaitsev and A. Moussiaux, Handbook of First Order Partial Differential Equations,, Taylor & Francis, (2002).   Google Scholar

[26]

S. N. Rasband, Marginal stability boundaries for some driven, damped, non-linear oscillators,, Int. J. Non-Linear Mech., 22 (1987), 477.  doi: 10.1016/0020-7462(87)90038-2.  Google Scholar

[27]

M. Senthil Velan and M. Lakshmanan, Lie symmetries and infinite-dimensional Lie algebras of certain nonlinear dissipative systems,, J. Phys. A (Math. Gen.), 28 (1995), 1929.  doi: 10.1088/0305-4470/28/7/015.  Google Scholar

[28]

F. Takens, Forced oscillations and bifurcations,, in Applications of Global Analysis, (1974), 1.   Google Scholar

[29]

B. van der Pol, A theory of the amplitude of free and forced triode vibrations,, Radio Review, 1 (1920), 701.   Google Scholar

[30]

B. van der Pol and J. van der Mark, Frequency demultiplication,, Nature, 120 (1927), 363.   Google Scholar

[31]

V. F. Zaitsev and A. D. Polyanin, Handbook of Ordinary Differential Equations (in Russian),, Fizmatlit, (2001).   Google Scholar

show all references

References:
[1]

M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform,, SIAM, (1981).   Google Scholar

[2]

J. A. Almendral and M. A. F. Sanjuán, Integrability and symmetries for the Helmholtz oscillator with friction,, J. Phys. A (Math. Gen.), 36 (2003), 695.  doi: 10.1088/0305-4470/36/3/308.  Google Scholar

[3]

H. W. Broer, B. Krauskopf and G. Vegter, Global Analysis of Dynamical Systems,, Institue of Physics Publishing, (2001).  doi: 10.1887/0750308036.  Google Scholar

[4]

A. Canada, P. Drabek and A. Fonda, Handbook of Differential Equations: Ordinary Differential Equations,, Elsevier/North-Holland, (2006).   Google Scholar

[5]

V. K. Chandrasekar, M. Senthilvelan and M. Lakshmanan, On the complete integrability and linearization of certain second-order nonlinear ordinary differential equations,, Proc. R. Soc. Lond. Ser. A, 461 (2005), 2451.  doi: 10.1098/rspa.2005.1465.  Google Scholar

[6]

L. G. S. Duarte, S. E. S. Duarte, A. C. P. da Mota and J. E. F. Skea, Solving the second-order ordinary differential equations by extending the Prelle-Singer method,, J. Phys. A (Math. Gen.), 34 (2001), 3015.  doi: 10.1088/0305-4470/34/14/308.  Google Scholar

[7]

G. Duffing, Erzwungene Schwingungen bei Veränderlicher Eigenfrequenz,, F. Vieweg u. Sohn, (1918).   Google Scholar

[8]

Z. Feng, On traveling wave solutions of the Burgers-Korteweg-de Vries equation,, Nonlinearity, 20 (2007), 343.  doi: 10.1088/0951-7715/20/2/006.  Google Scholar

[9]

Z. Feng, The first-integral method to the Burgers-Korteweg-de Vries equation,, J. Phys. A (Math. Gen.), 35 (2002), 343.  doi: 10.1088/0305-4470/35/2/312.  Google Scholar

[10]

Z. Feng, G. Chen and S. B. Hsu, A qualitative study of the damped Duffing equation and applications,, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1097.  doi: 10.3934/dcdsb.2006.6.1097.  Google Scholar

[11]

Z. Feng and Q. G. Meng, Exact solution for a two-dimensional KdV-Burgers-type equation with nonlinear terms of any order,, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 285.   Google Scholar

[12]

Z. Feng, S. Zheng and D. Y. Gao, Traveling wave solutions to a reaction-diffusion equation,, Z. angew. Math. Phys., 60 (2009), 756.  doi: 10.1007/s00033-008-8092-0.  Google Scholar

[13]

G. Gao and Z. Feng, First integrals for the Duffng-van der Pol-type oscillator,, E. J. Diff. Equs., 19 (2010), 123.   Google Scholar

[14]

M. Gitterman, The Noisy Oscillator: The First Hundred Years, from Einstein until Now,, World Scientific Publishing, (2005).   Google Scholar

[15]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,, Springer-Verlag, (1990).   Google Scholar

[16]

M. W. Hirsch and S. Smale, Differential Equations, Dynamical Systems and Linear Algebra,, Academic Press, (1974).   Google Scholar

[17]

P. Holmes and D. Rand, Phase portraits and bifurcations of the non-linear oscillator: $\ddotx +(\alpha +\gamma x^2) \dotx + \beta x + \delta x^3=0$,, Int. J. Non-Linear Mech., 15 (1980), 449.   Google Scholar

[18]

P. E. Hydon, Symmetry Methods for Differential Equations,, Cambridge University Press, (2000).  doi: 10.1017/CBO9780511623967.  Google Scholar

[19]

E. L. Ince, Ordinary Differential Equations,, Dover Publications, (1944).   Google Scholar

[20]

D. W. Jordan and P. Smith, Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers,, Oxford University Press, (2007).   Google Scholar

[21]

M. Lakshmanan and S. Rajasekar, Nonlinear Dynamics: Integrability, Chaos and Patterns,, Springer Verlag, (2003).  doi: 10.1007/978-3-642-55688-3.  Google Scholar

[22]

P. J. Olver, Applications of Lie Groups to Differential Equations,, Springer Verlag, (1993).  doi: 10.1007/978-1-4612-4350-2.  Google Scholar

[23]

M. Prelle and M. Singer, Elementary first integrals of differential equations,, Trans. Am. Math. Soc., 279 (1983), 215.  doi: 10.1090/S0002-9947-1983-0704611-X.  Google Scholar

[24]

A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations, 2nd edition,, CRC Press, (2003).   Google Scholar

[25]

A. D. Polyanin, V. F. Zaitsev and A. Moussiaux, Handbook of First Order Partial Differential Equations,, Taylor & Francis, (2002).   Google Scholar

[26]

S. N. Rasband, Marginal stability boundaries for some driven, damped, non-linear oscillators,, Int. J. Non-Linear Mech., 22 (1987), 477.  doi: 10.1016/0020-7462(87)90038-2.  Google Scholar

[27]

M. Senthil Velan and M. Lakshmanan, Lie symmetries and infinite-dimensional Lie algebras of certain nonlinear dissipative systems,, J. Phys. A (Math. Gen.), 28 (1995), 1929.  doi: 10.1088/0305-4470/28/7/015.  Google Scholar

[28]

F. Takens, Forced oscillations and bifurcations,, in Applications of Global Analysis, (1974), 1.   Google Scholar

[29]

B. van der Pol, A theory of the amplitude of free and forced triode vibrations,, Radio Review, 1 (1920), 701.   Google Scholar

[30]

B. van der Pol and J. van der Mark, Frequency demultiplication,, Nature, 120 (1927), 363.   Google Scholar

[31]

V. F. Zaitsev and A. D. Polyanin, Handbook of Ordinary Differential Equations (in Russian),, Fizmatlit, (2001).   Google Scholar

[1]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[2]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[3]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[4]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[5]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[6]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[7]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[8]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[9]

Ville Salo, Ilkka Törmä. Recoding Lie algebraic subshifts. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 1005-1021. doi: 10.3934/dcds.2020307

[10]

Hongliang Chang, Yin Chen, Runxuan Zhang. A generalization on derivations of Lie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2020124

[11]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[12]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[13]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045

[14]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[15]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[16]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[17]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[18]

Yen-Luan Chen, Chin-Chih Chang, Zhe George Zhang, Xiaofeng Chen. Optimal preventive "maintenance-first or -last" policies with generalized imperfect maintenance models. Journal of Industrial & Management Optimization, 2021, 17 (1) : 501-516. doi: 10.3934/jimo.2020149

[19]

Yuyuan Ouyang, Trevor Squires. Some worst-case datasets of deterministic first-order methods for solving binary logistic regression. Inverse Problems & Imaging, 2021, 15 (1) : 63-77. doi: 10.3934/ipi.2020047

[20]

Max E. Gilmore, Chris Guiver, Hartmut Logemann. Sampled-data integral control of multivariable linear infinite-dimensional systems with input nonlinearities. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021001

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (176)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]