December  2014, 7(6): 1259-1285. doi: 10.3934/dcdss.2014.7.1259

Dynamics of two phytoplankton species competing for light and nutrient with internal storage

1. 

Department of Mathematics, National Tsing Hua University, National Center of Theoretical Science, Hsinchu 300, Taiwan

2. 

Department of Mathematics, National Tsing Hua University, Hsinchu 300

Received  March 2013 Revised  November 2013 Published  June 2014

We analyze a competition model of two phytoplankton species for a single nutrient with internal storage and light in a well mixed aquatic environment. We apply the theory of monotone dynamical system to determine the outcomes of competition: extinction of two species, competitive exclusion, stable coexistence and bistability of two species. We also present the graphical presentation to classify the competition outcomes and to compare outcome of models with and without internal storage.
Citation: Sze-Bi Hsu, Chiu-Ju Lin. Dynamics of two phytoplankton species competing for light and nutrient with internal storage. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1259-1285. doi: 10.3934/dcdss.2014.7.1259
References:
[1]

M. Droop, Some thoughts on nutrient limitation in algae, J. Phycol., 9 (1973), 264-272. doi: 10.1111/j.1529-8817.1973.tb04092.x.

[2]

J. P. Grover, Constant- and variable-yield models of population growth: Responses to environmental variability and implications for competition, J. Theoret. Biol., 158 (1992), 409-428. doi: 10.1016/S0022-5193(05)80707-6.

[3]

S.-B. Hsu, K.-S. Cheng and S. P. Hubbell, Exploitative competition of microorganism for two complementary nutrients in continuous cultures, SIAM J. Appl. Math., 41 (1981), 422-444. doi: 10.1137/0141036.

[4]

S.-B. Hsu and T.-H. Hsu, Competitive exclusion of microbial species for a single-nutrient with internal storage, SIAM J. Appl. Math., 68 (2008), 1600-1617. doi: 10.1137/070700784.

[5]

S.-B. Hsu, S. P. Hubbell and P. Waltman, A mathematical theory for single-nutrient competition in continuous culture of micro-organisms, SIAM J. Appl. Math., 32 (1977), 366-383. doi: 10.1137/0132030.

[6]

S.-B. Hsu, H. L. Smith and P. Waltman, Competitive exclusion and coexistence for competitive systems on ordered Banach spaces, Trans. Amer. Math. Soc., 348 (1996), 4083-4094. doi: 10.1090/S0002-9947-96-01724-2.

[7]

J. Huisman and F. J. Weissing, Light limited growth and competition for light in well-mixed aquatic environments: An elementary, Ecology, 75 (1994), 507-520. doi: 10.2307/1939554.

[8]

J. Huisman and F. J. Weissing, Competition for nutrients and light in a mixed water column: A theoretical analysis, Am. Nat., 146 (1995), 536-564. doi: 10.1086/285814.

[9]

J. Jiang, X. Liang and X. Zhao, Saddle-point behavior for monotone semifolws and reaction-diffusion models, J. Diff. Equations, 203 (2004), 313-330. doi: 10.1016/j.jde.2004.05.002.

[10]

B. Li and H. L. Smith, Global dynamics of microbial competition for two resources with internal storage, J. Math. Biol., 55 (2007), 481-515. doi: 10.1007/s00285-007-0092-8.

[11]

J. Passarge, S. Hol, M. Escher and J. Huisman, Competition for nutrients and light: Stable coexistence, alternative stable states, or competitive exclusion?, Ecological Monographs, 76 (2006), 57-72. doi: 10.1890/04-1824.

[12]

H. L. Smith and H. R. Thieme, Stable coexistence and bi-stablility for competitive systems on ordered Banach spaces, J. Diff. Equations, 176 (2001), 195-222. doi: 10.1006/jdeq.2001.3981.

[13]

H. L. Smith and P. Waltman, The Theory of the Chemostat, Cambridge University Press, 1995. doi: 10.1017/CBO9780511530043.

[14]

D. Tilman, Resource Competition and Community Structure, Princeton University Press, New Jersey, 1982.

[15]

K. Yoshiyama, J. P. Mellard, E. Litchman and C. A. Klausmeier, Phytoplankton competition for nutrients and light in a statified water column, Am. Nat., 174 (2009), 190-203. doi: 10.1086/600113.

[16]

X.-Q. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21761-1.

show all references

References:
[1]

M. Droop, Some thoughts on nutrient limitation in algae, J. Phycol., 9 (1973), 264-272. doi: 10.1111/j.1529-8817.1973.tb04092.x.

[2]

J. P. Grover, Constant- and variable-yield models of population growth: Responses to environmental variability and implications for competition, J. Theoret. Biol., 158 (1992), 409-428. doi: 10.1016/S0022-5193(05)80707-6.

[3]

S.-B. Hsu, K.-S. Cheng and S. P. Hubbell, Exploitative competition of microorganism for two complementary nutrients in continuous cultures, SIAM J. Appl. Math., 41 (1981), 422-444. doi: 10.1137/0141036.

[4]

S.-B. Hsu and T.-H. Hsu, Competitive exclusion of microbial species for a single-nutrient with internal storage, SIAM J. Appl. Math., 68 (2008), 1600-1617. doi: 10.1137/070700784.

[5]

S.-B. Hsu, S. P. Hubbell and P. Waltman, A mathematical theory for single-nutrient competition in continuous culture of micro-organisms, SIAM J. Appl. Math., 32 (1977), 366-383. doi: 10.1137/0132030.

[6]

S.-B. Hsu, H. L. Smith and P. Waltman, Competitive exclusion and coexistence for competitive systems on ordered Banach spaces, Trans. Amer. Math. Soc., 348 (1996), 4083-4094. doi: 10.1090/S0002-9947-96-01724-2.

[7]

J. Huisman and F. J. Weissing, Light limited growth and competition for light in well-mixed aquatic environments: An elementary, Ecology, 75 (1994), 507-520. doi: 10.2307/1939554.

[8]

J. Huisman and F. J. Weissing, Competition for nutrients and light in a mixed water column: A theoretical analysis, Am. Nat., 146 (1995), 536-564. doi: 10.1086/285814.

[9]

J. Jiang, X. Liang and X. Zhao, Saddle-point behavior for monotone semifolws and reaction-diffusion models, J. Diff. Equations, 203 (2004), 313-330. doi: 10.1016/j.jde.2004.05.002.

[10]

B. Li and H. L. Smith, Global dynamics of microbial competition for two resources with internal storage, J. Math. Biol., 55 (2007), 481-515. doi: 10.1007/s00285-007-0092-8.

[11]

J. Passarge, S. Hol, M. Escher and J. Huisman, Competition for nutrients and light: Stable coexistence, alternative stable states, or competitive exclusion?, Ecological Monographs, 76 (2006), 57-72. doi: 10.1890/04-1824.

[12]

H. L. Smith and H. R. Thieme, Stable coexistence and bi-stablility for competitive systems on ordered Banach spaces, J. Diff. Equations, 176 (2001), 195-222. doi: 10.1006/jdeq.2001.3981.

[13]

H. L. Smith and P. Waltman, The Theory of the Chemostat, Cambridge University Press, 1995. doi: 10.1017/CBO9780511530043.

[14]

D. Tilman, Resource Competition and Community Structure, Princeton University Press, New Jersey, 1982.

[15]

K. Yoshiyama, J. P. Mellard, E. Litchman and C. A. Klausmeier, Phytoplankton competition for nutrients and light in a statified water column, Am. Nat., 174 (2009), 190-203. doi: 10.1086/600113.

[16]

X.-Q. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21761-1.

[1]

Hua Nie, Sze-Bi Hsu, Jianhua Wu. Coexistence solutions of a competition model with two species in a water column. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2691-2714. doi: 10.3934/dcdsb.2015.20.2691

[2]

Robert Stephen Cantrell, King-Yeung Lam. Competitive exclusion in phytoplankton communities in a eutrophic water column. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1783-1795. doi: 10.3934/dcdsb.2020361

[3]

Xiaoqing He, Sze-Bi Hsu, Feng-Bin Wang. A periodic-parabolic Droop model for two species competition in an unstirred chemostat. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4427-4451. doi: 10.3934/dcds.2020185

[4]

Azmy S. Ackleh, Keng Deng, Yixiang Wu. Competitive exclusion and coexistence in a two-strain pathogen model with diffusion. Mathematical Biosciences & Engineering, 2016, 13 (1) : 1-18. doi: 10.3934/mbe.2016.13.1

[5]

Hao Wang, Katherine Dunning, James J. Elser, Yang Kuang. Daphnia species invasion, competitive exclusion, and chaotic coexistence. Discrete and Continuous Dynamical Systems - B, 2009, 12 (2) : 481-493. doi: 10.3934/dcdsb.2009.12.481

[6]

Linfeng Mei, Feng-Bin Wang. Dynamics of phytoplankton species competition for light and nutrient with recycling in a water column. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2115-2132. doi: 10.3934/dcdsb.2020359

[7]

Azmy S. Ackleh, Youssef M. Dib, S. R.-J. Jang. Competitive exclusion and coexistence in a nonlinear refuge-mediated selection model. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 683-698. doi: 10.3934/dcdsb.2007.7.683

[8]

Yixiang Wu, Necibe Tuncer, Maia Martcheva. Coexistence and competitive exclusion in an SIS model with standard incidence and diffusion. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 1167-1187. doi: 10.3934/dcdsb.2017057

[9]

M. R. S. Kulenović, Orlando Merino. Competitive-exclusion versus competitive-coexistence for systems in the plane. Discrete and Continuous Dynamical Systems - B, 2006, 6 (5) : 1141-1156. doi: 10.3934/dcdsb.2006.6.1141

[10]

Dan Li, Hui Wan. Coexistence and exclusion of competitive Kolmogorov systems with semi-Markovian switching. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4145-4183. doi: 10.3934/dcds.2021032

[11]

Jifa Jiang, Fensidi Tang. The complete classification on a model of two species competition with an inhibitor. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 659-672. doi: 10.3934/dcds.2008.20.659

[12]

Linfeng Mei, Sze-Bi Hsu, Feng-Bin Wang. Growth of single phytoplankton species with internal storage in a water column. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 607-620. doi: 10.3934/dcdsb.2016.21.607

[13]

Danfeng Pang, Hua Nie, Jianhua Wu. Single phytoplankton species growth with light and crowding effect in a water column. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 41-74. doi: 10.3934/dcds.2019003

[14]

Nahla Abdellatif, Radhouane Fekih-Salem, Tewfik Sari. Competition for a single resource and coexistence of several species in the chemostat. Mathematical Biosciences & Engineering, 2016, 13 (4) : 631-652. doi: 10.3934/mbe.2016012

[15]

Aung Zaw Myint. Positive solutions of a diffusive two competitive species model with saturation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3625-3641. doi: 10.3934/dcdsb.2021199

[16]

Georg Hetzer, Wenxian Shen. Two species competition with an inhibitor involved. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 39-57. doi: 10.3934/dcds.2005.12.39

[17]

H. L. Smith, X. Q. Zhao. Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete and Continuous Dynamical Systems - B, 2001, 1 (2) : 183-191. doi: 10.3934/dcdsb.2001.1.183

[18]

Chueh-Hsin Chang, Chiun-Chuan Chen. Travelling wave solutions of a free boundary problem for a two-species competitive model. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1065-1074. doi: 10.3934/cpaa.2013.12.1065

[19]

Yuan Lou, Daniel Munther. Dynamics of a three species competition model. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3099-3131. doi: 10.3934/dcds.2012.32.3099

[20]

G. Donald Allen. A dynamic model for competitive-cooperative species. Conference Publications, 1998, 1998 (Special) : 29-50. doi: 10.3934/proc.1998.1998.29

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]