December  2014, 7(6): 1259-1285. doi: 10.3934/dcdss.2014.7.1259

Dynamics of two phytoplankton species competing for light and nutrient with internal storage

1. 

Department of Mathematics, National Tsing Hua University, National Center of Theoretical Science, Hsinchu 300, Taiwan

2. 

Department of Mathematics, National Tsing Hua University, Hsinchu 300

Received  March 2013 Revised  November 2013 Published  June 2014

We analyze a competition model of two phytoplankton species for a single nutrient with internal storage and light in a well mixed aquatic environment. We apply the theory of monotone dynamical system to determine the outcomes of competition: extinction of two species, competitive exclusion, stable coexistence and bistability of two species. We also present the graphical presentation to classify the competition outcomes and to compare outcome of models with and without internal storage.
Citation: Sze-Bi Hsu, Chiu-Ju Lin. Dynamics of two phytoplankton species competing for light and nutrient with internal storage. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1259-1285. doi: 10.3934/dcdss.2014.7.1259
References:
[1]

M. Droop, Some thoughts on nutrient limitation in algae,, J. Phycol., 9 (1973), 264.  doi: 10.1111/j.1529-8817.1973.tb04092.x.  Google Scholar

[2]

J. P. Grover, Constant- and variable-yield models of population growth: Responses to environmental variability and implications for competition,, J. Theoret. Biol., 158 (1992), 409.  doi: 10.1016/S0022-5193(05)80707-6.  Google Scholar

[3]

S.-B. Hsu, K.-S. Cheng and S. P. Hubbell, Exploitative competition of microorganism for two complementary nutrients in continuous cultures,, SIAM J. Appl. Math., 41 (1981), 422.  doi: 10.1137/0141036.  Google Scholar

[4]

S.-B. Hsu and T.-H. Hsu, Competitive exclusion of microbial species for a single-nutrient with internal storage,, SIAM J. Appl. Math., 68 (2008), 1600.  doi: 10.1137/070700784.  Google Scholar

[5]

S.-B. Hsu, S. P. Hubbell and P. Waltman, A mathematical theory for single-nutrient competition in continuous culture of micro-organisms,, SIAM J. Appl. Math., 32 (1977), 366.  doi: 10.1137/0132030.  Google Scholar

[6]

S.-B. Hsu, H. L. Smith and P. Waltman, Competitive exclusion and coexistence for competitive systems on ordered Banach spaces,, Trans. Amer. Math. Soc., 348 (1996), 4083.  doi: 10.1090/S0002-9947-96-01724-2.  Google Scholar

[7]

J. Huisman and F. J. Weissing, Light limited growth and competition for light in well-mixed aquatic environments: An elementary,, Ecology, 75 (1994), 507.  doi: 10.2307/1939554.  Google Scholar

[8]

J. Huisman and F. J. Weissing, Competition for nutrients and light in a mixed water column: A theoretical analysis,, Am. Nat., 146 (1995), 536.  doi: 10.1086/285814.  Google Scholar

[9]

J. Jiang, X. Liang and X. Zhao, Saddle-point behavior for monotone semifolws and reaction-diffusion models,, J. Diff. Equations, 203 (2004), 313.  doi: 10.1016/j.jde.2004.05.002.  Google Scholar

[10]

B. Li and H. L. Smith, Global dynamics of microbial competition for two resources with internal storage,, J. Math. Biol., 55 (2007), 481.  doi: 10.1007/s00285-007-0092-8.  Google Scholar

[11]

J. Passarge, S. Hol, M. Escher and J. Huisman, Competition for nutrients and light: Stable coexistence, alternative stable states, or competitive exclusion?,, Ecological Monographs, 76 (2006), 57.  doi: 10.1890/04-1824.  Google Scholar

[12]

H. L. Smith and H. R. Thieme, Stable coexistence and bi-stablility for competitive systems on ordered Banach spaces,, J. Diff. Equations, 176 (2001), 195.  doi: 10.1006/jdeq.2001.3981.  Google Scholar

[13]

H. L. Smith and P. Waltman, The Theory of the Chemostat,, Cambridge University Press, (1995).  doi: 10.1017/CBO9780511530043.  Google Scholar

[14]

D. Tilman, Resource Competition and Community Structure,, Princeton University Press, (1982).   Google Scholar

[15]

K. Yoshiyama, J. P. Mellard, E. Litchman and C. A. Klausmeier, Phytoplankton competition for nutrients and light in a statified water column,, Am. Nat., 174 (2009), 190.  doi: 10.1086/600113.  Google Scholar

[16]

X.-Q. Zhao, Dynamical Systems in Population Biology,, Springer-Verlag, (2003).  doi: 10.1007/978-0-387-21761-1.  Google Scholar

show all references

References:
[1]

M. Droop, Some thoughts on nutrient limitation in algae,, J. Phycol., 9 (1973), 264.  doi: 10.1111/j.1529-8817.1973.tb04092.x.  Google Scholar

[2]

J. P. Grover, Constant- and variable-yield models of population growth: Responses to environmental variability and implications for competition,, J. Theoret. Biol., 158 (1992), 409.  doi: 10.1016/S0022-5193(05)80707-6.  Google Scholar

[3]

S.-B. Hsu, K.-S. Cheng and S. P. Hubbell, Exploitative competition of microorganism for two complementary nutrients in continuous cultures,, SIAM J. Appl. Math., 41 (1981), 422.  doi: 10.1137/0141036.  Google Scholar

[4]

S.-B. Hsu and T.-H. Hsu, Competitive exclusion of microbial species for a single-nutrient with internal storage,, SIAM J. Appl. Math., 68 (2008), 1600.  doi: 10.1137/070700784.  Google Scholar

[5]

S.-B. Hsu, S. P. Hubbell and P. Waltman, A mathematical theory for single-nutrient competition in continuous culture of micro-organisms,, SIAM J. Appl. Math., 32 (1977), 366.  doi: 10.1137/0132030.  Google Scholar

[6]

S.-B. Hsu, H. L. Smith and P. Waltman, Competitive exclusion and coexistence for competitive systems on ordered Banach spaces,, Trans. Amer. Math. Soc., 348 (1996), 4083.  doi: 10.1090/S0002-9947-96-01724-2.  Google Scholar

[7]

J. Huisman and F. J. Weissing, Light limited growth and competition for light in well-mixed aquatic environments: An elementary,, Ecology, 75 (1994), 507.  doi: 10.2307/1939554.  Google Scholar

[8]

J. Huisman and F. J. Weissing, Competition for nutrients and light in a mixed water column: A theoretical analysis,, Am. Nat., 146 (1995), 536.  doi: 10.1086/285814.  Google Scholar

[9]

J. Jiang, X. Liang and X. Zhao, Saddle-point behavior for monotone semifolws and reaction-diffusion models,, J. Diff. Equations, 203 (2004), 313.  doi: 10.1016/j.jde.2004.05.002.  Google Scholar

[10]

B. Li and H. L. Smith, Global dynamics of microbial competition for two resources with internal storage,, J. Math. Biol., 55 (2007), 481.  doi: 10.1007/s00285-007-0092-8.  Google Scholar

[11]

J. Passarge, S. Hol, M. Escher and J. Huisman, Competition for nutrients and light: Stable coexistence, alternative stable states, or competitive exclusion?,, Ecological Monographs, 76 (2006), 57.  doi: 10.1890/04-1824.  Google Scholar

[12]

H. L. Smith and H. R. Thieme, Stable coexistence and bi-stablility for competitive systems on ordered Banach spaces,, J. Diff. Equations, 176 (2001), 195.  doi: 10.1006/jdeq.2001.3981.  Google Scholar

[13]

H. L. Smith and P. Waltman, The Theory of the Chemostat,, Cambridge University Press, (1995).  doi: 10.1017/CBO9780511530043.  Google Scholar

[14]

D. Tilman, Resource Competition and Community Structure,, Princeton University Press, (1982).   Google Scholar

[15]

K. Yoshiyama, J. P. Mellard, E. Litchman and C. A. Klausmeier, Phytoplankton competition for nutrients and light in a statified water column,, Am. Nat., 174 (2009), 190.  doi: 10.1086/600113.  Google Scholar

[16]

X.-Q. Zhao, Dynamical Systems in Population Biology,, Springer-Verlag, (2003).  doi: 10.1007/978-0-387-21761-1.  Google Scholar

[1]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[2]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[3]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[4]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[5]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[6]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[7]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[8]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[9]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[10]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[11]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[12]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[13]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[14]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049

[15]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[16]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[17]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[18]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[19]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[20]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]