\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Control via decoupling of a class of second order linear hybrid systems

Abstract Related Papers Cited by
  • We study a terminal state control (reachability) problem for certain elastic systems of ``hybrid" type consisting of a single space dimension distributed parameter part coupled, at one endpoint of the relevant spatial, $x$, interval, to a lumped mass component. Two such systems are studied in detail. The first is a vibrating string system fixed at $x = 0$ and attached to a point mass at the right hand endpoint $x = L$. The second example concerns an Euler - Bernoulli beam system ``clamped" at $x = 0$ and attached, at $x = L$, to a mass with both translational and rotational inertia. In both cases the controls act on the mass, which is modeled by a finite dimensional system of differential equations. Analysis of the reachability problem is facilitated by a preliminary ``feedback type" transformation of the control variable which decouples the point mass from the distributed system. In both examples a concluding analysis is required to show that the component of the control generated by feedback lies in the same space as the originally applied control.
    Mathematics Subject Classification: Primary: 74C05, 74K10, 74K20, 90C25, 93D15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. D. Aouragh and N. Yebari, Riesz basis approach and exponential stabilization of a nonhomogeneous flexible beam with a tip mass, Int. J. Math. & Stat., 7 (2010), 46-53.

    [2]

    S. Avdonin and S. Ivanov, Families of Exponentials: The Method of Moments in Controllability Problems for Distributed Parameter Systems, Cambridge University Press, Cambridge, New York, Melbourne, 1995.

    [3]

    M. S. Azam, N. Singh, A. Iyer and Y. P. Kakad, Detumbling and reorientation maneuvers and stabilization of NASA SCOLE system, IEEE Trans. Aerosp. & Electr. Syst., 28 (1992), 80-91.doi: 10.1109/7.135434.

    [4]

    C. Baiocchi, V. Komornik and P. Loreti, Théorèmes du type Ingham et application à la théorie du contrôle, C. R. Acad. Sci. Paris Sér. I, Math., 326 (1998), 453-458.doi: 10.1016/S0764-4442(97)89791-1.

    [5]

    W. E. Boyce and G. H. Handelman, Vibrations of rotating beams with tip mass, Angew. Math. & Phys., 12 (1961), 369-392.doi: 10.1007/BF01600687.

    [6]

    F. Conrad and Ö. Morgül, On the stabilization of a flexible beam with a tip mass, SIAM J. Control. & Opt., 36 (1998), 1962-1986.doi: 10.1137/S0363012996302366.

    [7]

    M. Grobbelaar-Van Dalsen, Uniform stability for the Timoshenko beam with tip load, J. Math. Anal. & and Appl., 361 (2010), 392-400.doi: 10.1016/j.jmaa.2009.06.059.

    [8]

    B.-Z. Guo, Riesz basis approach to the stabilization of a flexible beam with a tip mass, SIAM J. Control. & Opt., 39 (2001), 1736-1747.doi: 10.1137/S0363012999354880.

    [9]

    J. Humar and M. Ruban, Dynamics of Structures, CRC Press, Boca Raton, 2002.

    [10]

    A. E. Ingham, Some trigonometric inequalities in the theory of series, Mathem. Zeitschrift, 41 (1936), 367-379.doi: 10.1007/BF01180426.

    [11]

    W. Littman and L. Markus, Stabilization of a hybrid system of elasticity by feedback boundary damping, Ann. Mat. Pura & Appl., 152 (1988), 281-330.doi: 10.1007/BF01766154.

    [12]

    W. Littman and L. Markus, Exact boundary controllability of a hybrid system of elasticity, Arch. Rat. Mech. & Anal., 103 (1988), 193-236.doi: 10.1007/BF00251758.

    [13]

    Ö. Morgül, B. P. Rao and F. Conrad, On the stabilization of a cable with a tip mass, IEEE Trans. Automat. Control, 39 (1994), 2140-2145.doi: 10.1109/9.328811.

    [14]

    B. P. Rao, Uniform stabilization of a hybrid system of elasticity, SIAM J. Control. & Opt., 33 (1995), 440-454.doi: 10.1137/S0363012992239879.

    [15]

    D. L. Russell, Nonharmonic Fourier Series in the Control Theory of Distributed Parameter Systems, J. Math. Anal. & Appl., 18 (1967), 542-560.doi: 10.1016/0022-247X(67)90045-5.

    [16]

    N. Yebari and M. D. Aouragh, Uniform stabilization of a hybrid system of elasticity with variable coefficients, Int. J. Tomogr. & Stat., 10 (2008), 125-140.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(65) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return