December  2014, 7(6): 1335-1346. doi: 10.3934/dcdss.2014.7.1335

On the growth of positive entire solutions of elliptic PDEs and their gradients

1. 

Department of Mathematics, University of Salerno, via Giovanni Paolo II n.132, 84084 Fisciano (SA), Italy

Received  January 2013 Revised  July 2013 Published  June 2014

We investigate the growth of entire positive functions $u(x)$ and their gradients $Du$ in Sobolev spaces when a polynomial growth is assumed for their image $Lu$ through a linear second-order uniform elliptic operator $L$. In particular, under suitable assumptions on the coefficients, we show that if $Lu$ is bounded, then $u(x)$ may grow at most quadratically at infinity. We also discuss, by counterexamples, the optimality of the assumptions and extend the results to viscosity solutions of fully nonlinear equations.
Citation: Antonio Vitolo. On the growth of positive entire solutions of elliptic PDEs and their gradients. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1335-1346. doi: 10.3934/dcdss.2014.7.1335
References:
[1]

M. E. Amendola, L. Rossi and A. Vitolo, Harnack inequalities and ABP estimates for nonlinear second order elliptic equations in unbounded domains,, Abstr. Appl. Anal., (2008). doi: 10.1155/2008/178534. Google Scholar

[2]

L. A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations,, Ann. of Math., 130 (1989), 189. doi: 10.2307/1971480. Google Scholar

[3]

L. A. Caffarelli and X. Cabrè, Fully Nonlinear Elliptic Equations,, American Mathematical Society Colloquium Publications, (1995). Google Scholar

[4]

L. A. Caffarelli, M. G. Crandall, M. Kocan and A. Swiech, On viscosity solutions of fully nonlinear equations with measurable ingredients,, Commun. Pure Appl. Math., 49 (1996), 365. doi: 10.1002/(SICI)1097-0312(199604)49:4<365::AID-CPA3>3.0.CO;2-A. Google Scholar

[5]

I. Capuzzo Dolcetta, F. Leoni and A. Vitolo, The Alexandrov-Bakelman-Pucci weak maximum principle for fully nonlinear equations in unbounded domains,, Commun. Partial Differ. Equations, 30 (2005), 1863. doi: 10.1080/03605300500300030. Google Scholar

[6]

I. Capuzzo Dolcetta and A. Vitolo, A qualitative Phragmèn-Lindelöf theorem for fully nonlinear elliptic equations,, J. Differential Equations, 243 (2007), 578. doi: 10.1016/j.jde.2007.08.001. Google Scholar

[7]

I. Capuzzo Dolcetta and A. Vitolo, Glaeser's type gradient estimates for non-negative solutions of fully nonlinear elliptic equations,, Discrete Contin. Dyn. Syst., 28 (2010), 539. doi: 10.3934/dcds.2010.28.539. Google Scholar

[8]

M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc., 27 (1992), 1. doi: 10.1090/S0273-0979-1992-00266-5. Google Scholar

[9]

M. G. Crandall, M. Kocan, P. L. Lions and A. Swiech, Existence results for boundary problems for uniformly elliptic and parabolic fully nonlinear equations,, Electron. J. Differential Equations, 24 (1999), 1. Google Scholar

[10]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, 2nd edition, (1983). doi: 10.1007/978-3-642-61798-0. Google Scholar

[11]

S. Koike, A Beginners Guide to the Theory of Viscosity Solutions,, MSJ Memoirs 13, 13 (2004). Google Scholar

[12]

S. Koike and A. Swiech, Maximum principle for fully nonlinear equations via the iterated comparison function method,, Math. Ann., 339 (2007), 461. doi: 10.1007/s00208-007-0125-z. Google Scholar

[13]

S. Koike and T. Takahashi, Remarks on regularity of viscosity solutions for fully nonlinear uniformly elliptic PDEs with measurable ingredients,, Adv. Differential Equations, 7 (2002), 493. Google Scholar

[14]

E. Landau, Einige Ungleichungen für zweimal differenzierbare Funktionen,, Proc. London Math. Soc., 13 (1913), 43. doi: 10.1112/plms/s2-13.1.43. Google Scholar

[15]

Y. Y. Li and L. Nirenberg, Generalization of a well-known inequality,, Progress in Nonlinear Differential Equations and Their Applications, 66 (2006), 365. doi: 10.1007/3-7643-7401-2_24. Google Scholar

[16]

Y. Y. Li and L. Nirenberg, A miscellany,, in Percorsi incrociati (in ricordo di Vittorio Cafagna) (eds I. Capuzzo Dolcetta, (2010), 193. Google Scholar

[17]

V. G. Maz'ya and T. O. Shaposhnikova, Sharp pointwise interpolation inequalities for derivatives,, Funct. Anal. Appl., 36 (2002), 30. doi: 10.1023/A:1014478100799. Google Scholar

[18]

A. Swiech, $W^{1,p}$-Interior estimates for solutions of fully nonlinear, uniformly elliptic equations,, Adv. Differential Equations, 2 (1997), 1005. Google Scholar

[19]

A. Vitolo, On the maximum principle for complete second-order elliptic operators in general domains,, J. Differential Equations, 194 (2003), 166. doi: 10.1016/S0022-0396(03)00193-1. Google Scholar

[20]

A. Vitolo, On the Phragmèn-Lindelöf principle for second-order elliptic equations,, J. Math. Anal. Appl., 300 (2004), 244. doi: 10.1016/j.jmaa.2004.04.067. Google Scholar

show all references

References:
[1]

M. E. Amendola, L. Rossi and A. Vitolo, Harnack inequalities and ABP estimates for nonlinear second order elliptic equations in unbounded domains,, Abstr. Appl. Anal., (2008). doi: 10.1155/2008/178534. Google Scholar

[2]

L. A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations,, Ann. of Math., 130 (1989), 189. doi: 10.2307/1971480. Google Scholar

[3]

L. A. Caffarelli and X. Cabrè, Fully Nonlinear Elliptic Equations,, American Mathematical Society Colloquium Publications, (1995). Google Scholar

[4]

L. A. Caffarelli, M. G. Crandall, M. Kocan and A. Swiech, On viscosity solutions of fully nonlinear equations with measurable ingredients,, Commun. Pure Appl. Math., 49 (1996), 365. doi: 10.1002/(SICI)1097-0312(199604)49:4<365::AID-CPA3>3.0.CO;2-A. Google Scholar

[5]

I. Capuzzo Dolcetta, F. Leoni and A. Vitolo, The Alexandrov-Bakelman-Pucci weak maximum principle for fully nonlinear equations in unbounded domains,, Commun. Partial Differ. Equations, 30 (2005), 1863. doi: 10.1080/03605300500300030. Google Scholar

[6]

I. Capuzzo Dolcetta and A. Vitolo, A qualitative Phragmèn-Lindelöf theorem for fully nonlinear elliptic equations,, J. Differential Equations, 243 (2007), 578. doi: 10.1016/j.jde.2007.08.001. Google Scholar

[7]

I. Capuzzo Dolcetta and A. Vitolo, Glaeser's type gradient estimates for non-negative solutions of fully nonlinear elliptic equations,, Discrete Contin. Dyn. Syst., 28 (2010), 539. doi: 10.3934/dcds.2010.28.539. Google Scholar

[8]

M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bull. Amer. Math. Soc., 27 (1992), 1. doi: 10.1090/S0273-0979-1992-00266-5. Google Scholar

[9]

M. G. Crandall, M. Kocan, P. L. Lions and A. Swiech, Existence results for boundary problems for uniformly elliptic and parabolic fully nonlinear equations,, Electron. J. Differential Equations, 24 (1999), 1. Google Scholar

[10]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, 2nd edition, (1983). doi: 10.1007/978-3-642-61798-0. Google Scholar

[11]

S. Koike, A Beginners Guide to the Theory of Viscosity Solutions,, MSJ Memoirs 13, 13 (2004). Google Scholar

[12]

S. Koike and A. Swiech, Maximum principle for fully nonlinear equations via the iterated comparison function method,, Math. Ann., 339 (2007), 461. doi: 10.1007/s00208-007-0125-z. Google Scholar

[13]

S. Koike and T. Takahashi, Remarks on regularity of viscosity solutions for fully nonlinear uniformly elliptic PDEs with measurable ingredients,, Adv. Differential Equations, 7 (2002), 493. Google Scholar

[14]

E. Landau, Einige Ungleichungen für zweimal differenzierbare Funktionen,, Proc. London Math. Soc., 13 (1913), 43. doi: 10.1112/plms/s2-13.1.43. Google Scholar

[15]

Y. Y. Li and L. Nirenberg, Generalization of a well-known inequality,, Progress in Nonlinear Differential Equations and Their Applications, 66 (2006), 365. doi: 10.1007/3-7643-7401-2_24. Google Scholar

[16]

Y. Y. Li and L. Nirenberg, A miscellany,, in Percorsi incrociati (in ricordo di Vittorio Cafagna) (eds I. Capuzzo Dolcetta, (2010), 193. Google Scholar

[17]

V. G. Maz'ya and T. O. Shaposhnikova, Sharp pointwise interpolation inequalities for derivatives,, Funct. Anal. Appl., 36 (2002), 30. doi: 10.1023/A:1014478100799. Google Scholar

[18]

A. Swiech, $W^{1,p}$-Interior estimates for solutions of fully nonlinear, uniformly elliptic equations,, Adv. Differential Equations, 2 (1997), 1005. Google Scholar

[19]

A. Vitolo, On the maximum principle for complete second-order elliptic operators in general domains,, J. Differential Equations, 194 (2003), 166. doi: 10.1016/S0022-0396(03)00193-1. Google Scholar

[20]

A. Vitolo, On the Phragmèn-Lindelöf principle for second-order elliptic equations,, J. Math. Anal. Appl., 300 (2004), 244. doi: 10.1016/j.jmaa.2004.04.067. Google Scholar

[1]

Soohyun Bae. Positive entire solutions of inhomogeneous semilinear elliptic equations with supercritical exponent. Conference Publications, 2005, 2005 (Special) : 50-59. doi: 10.3934/proc.2005.2005.50

[2]

Yajing Zhang, Jianghao Hao. Existence of positive entire solutions for semilinear elliptic systems in the whole space. Communications on Pure & Applied Analysis, 2009, 8 (2) : 719-724. doi: 10.3934/cpaa.2009.8.719

[3]

Peter Poláčik. On uniqueness of positive entire solutions and other properties of linear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 13-26. doi: 10.3934/dcds.2005.12.13

[4]

Limei Dai. Entire solutions with asymptotic behavior of fully nonlinear uniformly elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1707-1714. doi: 10.3934/cpaa.2011.10.1707

[5]

Alan V. Lair, Ahmed Mohammed. Entire large solutions of semilinear elliptic equations of mixed type. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1607-1618. doi: 10.3934/cpaa.2009.8.1607

[6]

Peter Poláčik, Darío A. Valdebenito. Existence of quasiperiodic solutions of elliptic equations on the entire space with a quadratic nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-25. doi: 10.3934/dcdss.2020077

[7]

Italo Capuzzo Dolcetta, Antonio Vitolo. Glaeser's type gradient estimates for non-negative solutions of fully nonlinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 539-557. doi: 10.3934/dcds.2010.28.539

[8]

Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601

[9]

Claudia Anedda, Giovanni Porru. Boundary estimates for solutions of weighted semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3801-3817. doi: 10.3934/dcds.2012.32.3801

[10]

Patrizia Pucci, Marco Rigoli. Entire solutions of singular elliptic inequalities on complete manifolds. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 115-137. doi: 10.3934/dcds.2008.20.115

[11]

Kyril Tintarev. Positive solutions of elliptic equations with a critical oscillatory nonlinearity. Conference Publications, 2007, 2007 (Special) : 974-981. doi: 10.3934/proc.2007.2007.974

[12]

Jun Bao, Lihe Wang, Chunqin Zhou. Positive solutions to elliptic equations in unbounded cylinder. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1389-1400. doi: 10.3934/dcdsb.2016001

[13]

Dumitru Motreanu, Viorica V. Motreanu, Abdelkrim Moussaoui. Location of Nodal solutions for quasilinear elliptic equations with gradient dependence. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 293-307. doi: 10.3934/dcdss.2018016

[14]

Zhijun Zhang. Large solutions of semilinear elliptic equations with a gradient term: existence and boundary behavior. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1381-1392. doi: 10.3934/cpaa.2013.12.1381

[15]

Marius Ghergu, Vicenţiu Rădulescu. Nonradial blow-up solutions of sublinear elliptic equations with gradient term. Communications on Pure & Applied Analysis, 2004, 3 (3) : 465-474. doi: 10.3934/cpaa.2004.3.465

[16]

Yu-Juan Sun, Li Zhang, Wan-Tong Li, Zhi-Cheng Wang. Entire solutions in nonlocal monostable equations: Asymmetric case. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1049-1072. doi: 10.3934/cpaa.2019051

[17]

Guozhen Lu and Juncheng Wei. On positive entire solutions to the Yamabe-type problem on the Heisenberg and stratified groups. Electronic Research Announcements, 1997, 3: 83-89.

[18]

Y. Efendiev, Alexander Pankov. Meyers type estimates for approximate solutions of nonlinear elliptic equations and their applications. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 481-492. doi: 10.3934/dcdsb.2006.6.481

[19]

Claudia Anedda, Giovanni Porru. Second order estimates for boundary blow-up solutions of elliptic equations. Conference Publications, 2007, 2007 (Special) : 54-63. doi: 10.3934/proc.2007.2007.54

[20]

Tommaso Leonori, Ireneo Peral, Ana Primo, Fernando Soria. Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6031-6068. doi: 10.3934/dcds.2015.35.6031

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]