December  2014, 7(6): 1363-1383. doi: 10.3934/dcdss.2014.7.1363

On bursting solutions near chaotic regimes in a neuron model

1. 

North College of Beijing University of Chemical Technology, Hebei 065201, China

2. 

University of Texas at Arlington, Department of Mathematics, Box 19408, Arlington, TX 76019, United States

3. 

Beihang University, Department of Dynamics and Control, Beijing 100191, China

4. 

Department of Mathematics, The University of Texas at Arlington, Arlington, TX 76019

Received  April 2013 Revised  November 2013 Published  June 2014

In this paper, we use mathematical analysis to study the transition of dynamic behavior in a system of two synaptically coupled Hindmarsh-Rose (HR) neurons, based on its flow-induced Poincaré map. Numerical simulations have shown that the individual HR neuron has chaotic behavior, but neurons become regularized when coupled. Using a geometric method for dynamical systems, we begin with an investigation of the bifurcation structure of its fast subsystem. We show that the emergence of regular patterns out of chaos is due to a topological change in its underlying bifurcations. Then we focus on the transitional phase of coupling strength, where the bursting solutions need to pass near two homoclinic bifurcation points located on a branch of saddle points, and we study the flow-induced Poincaré maps. We observe that as the gap between the homoclinic points narrows, the image of the return map moves away from chaotic regions where winding numbers vary abruptly. That, along with Lyaponov exponent calculations, reveals the fine dynamics in the pathway across chaotic bursting behavior and regular bursting of coupled HR neurons as the synaptic coupling strength of the neurons increases. The main contribution of this paper is the mathematical description of the transition of synaptically coupled neurons from chaotic trajectories to regular burst phases using dynamical system tools such as Poincaré maps.
Citation: Feng Zhang, Alice Lubbe, Qishao Lu, Jianzhong Su. On bursting solutions near chaotic regimes in a neuron model. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1363-1383. doi: 10.3934/dcdss.2014.7.1363
References:
[1]

H. D. I. Abarbanel, R. Huerta, M. I. Rabinovich, N. F. Rulkov, P. F. Rowat and A. I. Selverston, Synchronized action of synaptically coupled chaotic model neurons, Neural Computation, 8 (1996), 1567-1602. doi: 10.1162/neco.1996.8.8.1567.

[2]

V. Belykh, I. Belykh, E. Mosekilde and M. Colding-Jørgensen, Homoclinic bifurcations leading to bursting oscillations in cell models, European Physical Journal E, 3 (2000), 205-219. doi: 10.1007/s101890070012.

[3]

R. Bertram, M. J. Butte, T. Kiemel and A. Sherman, Topologica and phenomenological classification of bursting oscillations, Bull. Math. Biol., 57 (1995), 413-439.

[4]

R. J. Butera, J. Rinzel and J. C. Smith, Models respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons, J. Neurophysiol, 81 (1999), 382-397.

[5]

T. R. Chay and J. Keizer, Minimal model for membrane oscillations in the pancreatic beta-cell, Biophys. J., 42 (1983), 181-189. doi: 10.1016/S0006-3495(83)84384-7.

[6]

L. N. Cornelisse, W. J. J. M. Scheenen, W. J. H. Koopman, E. W. Roubos and S. C. A. M. Gielen, Minimal model for intracellular calcium oscillations and electrical bursting in melanotrope cells of Xenopus Laevis, Neural Comput., 13 (2000), 113-137.

[7]

M. Dhamala, V. K. Jirsa and M. Ding, Transitions to synchrony in coupled bursting neurons, Physical Review Letters, 92 (2004), 028101. doi: 10.1103/PhysRevLett.92.028101.

[8]

B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Systems, 1st edition, SIAM, Philadelphia, 2002. doi: 10.1137/1.9780898718195.

[9]

N. Fenichel, Geometric singular perturbation theory, J. D. E., 31 (1979), 53-98. doi: 10.1016/0022-0396(79)90152-9.

[10]

J. L. Hindmarsh and R. M. Rose, A model of neuronal bursting using three coupled first order differential equations, Proc. R. Soc. Lond. B, 221 (1984), 87-102. doi: 10.1098/rspb.1984.0024.

[11]

E. M. Izhikevich, Neural Excitability, Spiking, and Bursting, I. J. B. C., 10 (2000), 1171-1266. doi: 10.1142/S0218127400000840.

[12]

E. Lee and D. Terman, Uniqueness and stability of periodic bursting solutions, J. Diff. Equ., 158 (1999), 48-78. doi: 10.1016/S0022-0396(99)80018-7.

[13]

S. Q. Ma, Z. Feng and Q. Lu, Dynamics and double hopf bifurcations of the Rose-Hindmarsh model with time delay, International Journal of Bifurcation and Chaos, 19 (2009), 3733-3751. doi: 10.1142/S0218127409025080.

[14]

G. S. Medvedev, Reduction of a model of an excitable cell to a one-dimensional map, Physica D, 202 (2005), 37-59. doi: 10.1016/j.physd.2005.01.021.

[15]

M. Pedersen and M. Sorensen, The effect of noise on beta-cell burst period, SIAM J. Appl. Math, 67 (2007), 530-542. doi: 10.1137/060655663.

[16]

J. Rinzel, A formal classification of bursting mechanisms in excitable systems, Proceedings of International Congress of Mathematics, 1 (1987), 1578-1593.

[17]

J. Rubin, Bursting induced by excitatory synaptic coupling in nonidentical conditional relaxation oscillators or square-wave bursters, Phys. Rev. E., 74 (2006), 021917, 15 pp. doi: 10.1103/PhysRevE.74.021917.

[18]

J. Rubin and D. Terman, Geometric singular perturbation analysis of neuronal dynamics, in Handbook of Dynamical Systems, Vol. 2, North Holland, Amsterdam, 2002, 93-146. doi: 10.1016/S1874-575X(02)80024-8.

[19]

N. F. Rulkov, Regularization of synchronized chaotic bursts, Physical Review Letters, 86 (2001), 183-186. doi: 10.1103/PhysRevLett.86.183.

[20]

A. Sherman, Contributions of modeling to understanding stimulus-secretion coupling in pancreatic $\beta$-cells, Amer. J. Physiol., 271 (1996), E362-E372.

[21]

A. Sherman and J. Rinzel, Rhythmogenic effects of weak electrotonic coupling in neuronal models, Proc. Natl. Acad. Sci., 89 (1992), 2471-2474. doi: 10.1073/pnas.89.6.2471.

[22]

D. Somers and N. Kopell, Rapid synchronization through fast threshold modulation, Biol. Cybern., 68 (1993), 393-407. doi: 10.1007/BF00198772.

[23]

J. Su, H. Perez and M. He, Regular bursting emerging from coupled chaotic neurons, Discrete and Continuous Dynamical Systems, supplemental issue, (2007), 946-955.

[24]

D. Terman, Chaotic spikes arising from a model of bursting in excitable membranes, J. Appl. Math., 51 (1991), 1418-1450. doi: 10.1137/0151071.

[25]

F. Zhang, W. Zhang, Q. Lu and J. Su, Transition mechanisms between periodic and chaotic bursting neurons, in Cognitive Neurodynamics (II), Springer Science+Media B., 2011, 247-251. doi: 10.1007/978-90-481-9695-1_38.

show all references

References:
[1]

H. D. I. Abarbanel, R. Huerta, M. I. Rabinovich, N. F. Rulkov, P. F. Rowat and A. I. Selverston, Synchronized action of synaptically coupled chaotic model neurons, Neural Computation, 8 (1996), 1567-1602. doi: 10.1162/neco.1996.8.8.1567.

[2]

V. Belykh, I. Belykh, E. Mosekilde and M. Colding-Jørgensen, Homoclinic bifurcations leading to bursting oscillations in cell models, European Physical Journal E, 3 (2000), 205-219. doi: 10.1007/s101890070012.

[3]

R. Bertram, M. J. Butte, T. Kiemel and A. Sherman, Topologica and phenomenological classification of bursting oscillations, Bull. Math. Biol., 57 (1995), 413-439.

[4]

R. J. Butera, J. Rinzel and J. C. Smith, Models respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons, J. Neurophysiol, 81 (1999), 382-397.

[5]

T. R. Chay and J. Keizer, Minimal model for membrane oscillations in the pancreatic beta-cell, Biophys. J., 42 (1983), 181-189. doi: 10.1016/S0006-3495(83)84384-7.

[6]

L. N. Cornelisse, W. J. J. M. Scheenen, W. J. H. Koopman, E. W. Roubos and S. C. A. M. Gielen, Minimal model for intracellular calcium oscillations and electrical bursting in melanotrope cells of Xenopus Laevis, Neural Comput., 13 (2000), 113-137.

[7]

M. Dhamala, V. K. Jirsa and M. Ding, Transitions to synchrony in coupled bursting neurons, Physical Review Letters, 92 (2004), 028101. doi: 10.1103/PhysRevLett.92.028101.

[8]

B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Systems, 1st edition, SIAM, Philadelphia, 2002. doi: 10.1137/1.9780898718195.

[9]

N. Fenichel, Geometric singular perturbation theory, J. D. E., 31 (1979), 53-98. doi: 10.1016/0022-0396(79)90152-9.

[10]

J. L. Hindmarsh and R. M. Rose, A model of neuronal bursting using three coupled first order differential equations, Proc. R. Soc. Lond. B, 221 (1984), 87-102. doi: 10.1098/rspb.1984.0024.

[11]

E. M. Izhikevich, Neural Excitability, Spiking, and Bursting, I. J. B. C., 10 (2000), 1171-1266. doi: 10.1142/S0218127400000840.

[12]

E. Lee and D. Terman, Uniqueness and stability of periodic bursting solutions, J. Diff. Equ., 158 (1999), 48-78. doi: 10.1016/S0022-0396(99)80018-7.

[13]

S. Q. Ma, Z. Feng and Q. Lu, Dynamics and double hopf bifurcations of the Rose-Hindmarsh model with time delay, International Journal of Bifurcation and Chaos, 19 (2009), 3733-3751. doi: 10.1142/S0218127409025080.

[14]

G. S. Medvedev, Reduction of a model of an excitable cell to a one-dimensional map, Physica D, 202 (2005), 37-59. doi: 10.1016/j.physd.2005.01.021.

[15]

M. Pedersen and M. Sorensen, The effect of noise on beta-cell burst period, SIAM J. Appl. Math, 67 (2007), 530-542. doi: 10.1137/060655663.

[16]

J. Rinzel, A formal classification of bursting mechanisms in excitable systems, Proceedings of International Congress of Mathematics, 1 (1987), 1578-1593.

[17]

J. Rubin, Bursting induced by excitatory synaptic coupling in nonidentical conditional relaxation oscillators or square-wave bursters, Phys. Rev. E., 74 (2006), 021917, 15 pp. doi: 10.1103/PhysRevE.74.021917.

[18]

J. Rubin and D. Terman, Geometric singular perturbation analysis of neuronal dynamics, in Handbook of Dynamical Systems, Vol. 2, North Holland, Amsterdam, 2002, 93-146. doi: 10.1016/S1874-575X(02)80024-8.

[19]

N. F. Rulkov, Regularization of synchronized chaotic bursts, Physical Review Letters, 86 (2001), 183-186. doi: 10.1103/PhysRevLett.86.183.

[20]

A. Sherman, Contributions of modeling to understanding stimulus-secretion coupling in pancreatic $\beta$-cells, Amer. J. Physiol., 271 (1996), E362-E372.

[21]

A. Sherman and J. Rinzel, Rhythmogenic effects of weak electrotonic coupling in neuronal models, Proc. Natl. Acad. Sci., 89 (1992), 2471-2474. doi: 10.1073/pnas.89.6.2471.

[22]

D. Somers and N. Kopell, Rapid synchronization through fast threshold modulation, Biol. Cybern., 68 (1993), 393-407. doi: 10.1007/BF00198772.

[23]

J. Su, H. Perez and M. He, Regular bursting emerging from coupled chaotic neurons, Discrete and Continuous Dynamical Systems, supplemental issue, (2007), 946-955.

[24]

D. Terman, Chaotic spikes arising from a model of bursting in excitable membranes, J. Appl. Math., 51 (1991), 1418-1450. doi: 10.1137/0151071.

[25]

F. Zhang, W. Zhang, Q. Lu and J. Su, Transition mechanisms between periodic and chaotic bursting neurons, in Cognitive Neurodynamics (II), Springer Science+Media B., 2011, 247-251. doi: 10.1007/978-90-481-9695-1_38.

[1]

Jianzhong Su, Humberto Perez-Gonzalez, Ming He. Regular bursting emerging from coupled chaotic neurons. Conference Publications, 2007, 2007 (Special) : 946-955. doi: 10.3934/proc.2007.2007.946

[2]

Jiaoyan Wang, Jianzhong Su, Humberto Perez Gonzalez, Jonathan Rubin. A reliability study of square wave bursting $\beta$-cells with noise. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 569-588. doi: 10.3934/dcdsb.2011.16.569

[3]

Feng Zhang, Wei Zhang, Pan Meng, Jianzhong Su. Bifurcation analysis of bursting solutions of two Hindmarsh-Rose neurons with joint electrical and synaptic coupling. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 637-651. doi: 10.3934/dcdsb.2011.16.637

[4]

Linghai Zhang. Wave speed analysis of traveling wave fronts in delayed synaptically coupled neuronal networks. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2405-2450. doi: 10.3934/dcds.2014.34.2405

[5]

Runxia Wang, Haihong Liu, Fang Yan, Xiaohui Wang. Hopf-pitchfork bifurcation analysis in a coupled FHN neurons model with delay. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 523-542. doi: 10.3934/dcdss.2017026

[6]

Anastasiia Panchuk, Frank Westerhoff. Speculative behavior and chaotic asset price dynamics: On the emergence of a bandcount accretion bifurcation structure. Discrete and Continuous Dynamical Systems - B, 2021, 26 (11) : 5941-5964. doi: 10.3934/dcdsb.2021117

[7]

Lixia Duan, Zhuoqin Yang, Shenquan Liu, Dunwei Gong. Bursting and two-parameter bifurcation in the Chay neuronal model. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 445-456. doi: 10.3934/dcdsb.2011.16.445

[8]

Jibin Li, Fengjuan Chen. Exact travelling wave solutions and their dynamical behavior for a class coupled nonlinear wave equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 163-172. doi: 10.3934/dcdsb.2013.18.163

[9]

Qixiang Wen, Shenquan Liu, Bo Lu. Firing patterns and bifurcation analysis of neurons under electromagnetic induction. Electronic Research Archive, 2021, 29 (5) : 3205-3226. doi: 10.3934/era.2021034

[10]

Maria Francesca Carfora, Enrica Pirozzi. Stochastic modeling of the firing activity of coupled neurons periodically driven. Conference Publications, 2015, 2015 (special) : 195-203. doi: 10.3934/proc.2015.0195

[11]

Jorge Duarte, Cristina Januário, Nuno Martins. A chaotic bursting-spiking transition in a pancreatic beta-cells system: observation of an interior glucose-induced crisis. Mathematical Biosciences & Engineering, 2017, 14 (4) : 821-842. doi: 10.3934/mbe.2017045

[12]

Thai Son Doan, Martin Rasmussen, Peter E. Kloeden. The mean-square dichotomy spectrum and a bifurcation to a mean-square attractor. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 875-887. doi: 10.3934/dcdsb.2015.20.875

[13]

Roberta Sirovich, Laura Sacerdote, Alessandro E. P. Villa. Cooperative behavior in a jump diffusion model for a simple network of spiking neurons. Mathematical Biosciences & Engineering, 2014, 11 (2) : 385-401. doi: 10.3934/mbe.2014.11.385

[14]

Zhuoqin Yang, Tingting Guan. Bifurcation analysis of complex bursting induced by two different time-scale slow variables. Conference Publications, 2011, 2011 (Special) : 1440-1447. doi: 10.3934/proc.2011.2011.1440

[15]

Lixia Duan, Dehong Zhai, Qishao Lu. Bifurcation and bursting in Morris-Lecar model for class I and class II excitability. Conference Publications, 2011, 2011 (Special) : 391-399. doi: 10.3934/proc.2011.2011.391

[16]

Francesca Alessio, Vittorio Coti Zelati, Piero Montecchiari. Chaotic behavior of rapidly oscillating Lagrangian systems. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 687-707. doi: 10.3934/dcds.2004.10.687

[17]

A.V. Borisov, A.A. Kilin, I.S. Mamaev. Reduction and chaotic behavior of point vortices on a plane and a sphere. Conference Publications, 2005, 2005 (Special) : 100-109. doi: 10.3934/proc.2005.2005.100

[18]

Julia Calatayud, Juan Carlos Cortés, Marc Jornet. On the random wave equation within the mean square context. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 409-425. doi: 10.3934/dcdss.2021082

[19]

Timothy J. Lewis. Phase-locking in electrically coupled non-leaky integrate-and-fire neurons. Conference Publications, 2003, 2003 (Special) : 554-562. doi: 10.3934/proc.2003.2003.554

[20]

B. Fernandez, P. Guiraud. Route to chaotic synchronisation in coupled map lattices: Rigorous results. Discrete and Continuous Dynamical Systems - B, 2004, 4 (2) : 435-456. doi: 10.3934/dcdsb.2004.4.435

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (115)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]