-
Previous Article
Solvability of boundary value problems for strongly degenerate parabolic equations with discontinuous coefficients
- DCDS-S Home
- This Issue
-
Next Article
Energy-dissipative solution to a one-dimensional phase field model of grain boundary motion
Brownian point vortices and dd-model
1. | Division of Mathematical Science, Department of System Innovation, Graduate School of Engineering Science, Osaka University, 1-3 Machikane-yama, Toyonaka, Osaka, 560-8531 |
References:
[1] |
N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868.
doi: 10.1080/03605307908820113. |
[2] |
F. Bavaud, Equilibrium properties of the Vlasov functional: The generalized Poisson-Boltzmann-Emden equation, Rev. Modern Physics, 63 (1991), 129-149.
doi: 10.1103/RevModPhys.63.129. |
[3] |
P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 715-743. |
[4] |
P. Biler, W. Hebisch and T. Nadzieja, The Debye system: existence and large time behavior of solutions, Nonlinear Analysis, 23 (1994), 1189-1209.
doi: 10.1016/0362-546X(94)90101-5. |
[5] |
E. Caglioti, P.-L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description, Comm. Math. Phys., 143 (1992), 501-525.
doi: 10.1007/BF02099262. |
[6] |
P.-H. Chavanis, Kinetic theory of $2D$ point vortices from a BBGKY-like hiearchy, Physica A, 387 (2008), 1123-1154.
doi: 10.1016/j.physa.2007.10.022. |
[7] |
P.-H. Chavanis, Two-dimensional Brownian vortices, Physica A, 387 (2008), 6917-6942.
doi: 10.1016/j.physa.2008.09.019. |
[8] |
C. Conca and E. Espejo, Threshold condition for global existence and blow-up to a radially symmetric drift-diffusion system, Applied Mathematics Letters, 25 (2012), 352-356.
doi: 10.1016/j.aml.2011.09.013. |
[9] |
C. Conca, E. Espejo and K. Vilches, Remarks on the blow-up and global existence for a two-species chemotactic Keller-Segel system in $R^2$, Euro. J. Appl. Math., 22 (2011), 553-580.
doi: 10.1017/S0956792511000258. |
[10] |
E. E. Espejo, M. Kurokiba and T. Suzuki, Blowup threshold and collapse mass separation for a drift-diffusion system in dimension two, preprint. |
[11] |
E. E. Espejo, A. Stevens and T. Suzuki, Simultaneous blowup and mass separation during collapse in an interacting system of chemotactic species, Differential and Integral Equations, 25 (2012), 251-288. |
[12] |
E. E. Espejo, A. Stevens and J. J. L. Velázquez, Simultaneous finite time blow-up in a two-species model for chemotaxis, Analysis, 29 (2009), 317-338.
doi: 10.1524/anly.2009.1029. |
[13] |
E. E. Espejo, A. Stevens and J. J. L. Velázquez, A note on non-simultaneous blow-up for a drift-diffusion model, Differential and Integral Equations, 23 (2010), 451-462. |
[14] |
G. L. Eyink and H. Spohn, Negative-temperature states and large-scale, long-lived vortices in two-dimensional turbulence, J. Statistical Physics, 70 (1993), 833-886.
doi: 10.1007/BF01053597. |
[15] |
H. Gajewski and K. Zacharias, Global behaviour of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77-114.
doi: 10.1002/mana.19981950106. |
[16] |
W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824.
doi: 10.2307/2153966. |
[17] |
G. Joyce and D. Montgomery, Negative temperature states for two-dimensional guiding-centre plasma, J. Plasma Phys., 10 (1973), 107-121. |
[18] |
M. K. H. Kiessling, Statistical mechanics of classical particles with logarithmic interaction, Comm. Pure Appl. Math., 46 (1993), 27-56.
doi: 10.1002/cpa.3160460103. |
[19] |
M. Kurokiba and T. Ogawa, Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type, Differential and Integral Equations, 16 (2003), 427-452. |
[20] |
M. Kurokiba and T. Ogawa, Wellposedness of the drit-diffusion system in $L^p$ arising from the semiconductor device simulation, J. Math. Anal. Appl., 342 (2008), 1052-1067.
doi: 10.1016/j.jmaa.2007.11.017. |
[21] |
M. Kurokiba, T. Nagai and T. Ogawa, The uniform boundedness and threshold for the global existence of the radial solution to a drift-diffusion system, Comm. Pure Appl. Anal., 5 (2006), 97-106 |
[22] |
T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433. |
[23] |
K. Nagasaki and T. Suzuki, Asymptotic analysis for two-dimensional elliptic eivgnvalue problem with exponentially dominated nonlinearities, Asymptoitc Analysis, 3 (1990), 173-188. |
[24] |
P. K. Newton, "The $N$-Vortex Problem: Analytical Techniques," Applied Mathematical Sciences, 145, Springer-Verlag, New York, 2001.
doi: 10.1007/978-1-4684-9290-3. |
[25] |
L. Onsager, Statistical hydrodynamics, Suppl. Nuovo Cimento, 6 (1949), 279-287.
doi: 10.1007/BF02780991. |
[26] |
T. Senba and T. Suzuki, Chemotactic collapse in a parabolic-elliptic system of mathematical biology, Adv. Differential Equations, 6 (2001), 21-50. |
[27] |
T. Senba and T. Suzuki, Parabolic system of chemotaxis; blowup in a finite and in the infinite time, Meth. Appl. Anal., 8 (2001), 349-368. |
[28] |
I. Shafrir and G. Wolansky, Moser-Trudinger and logarithmic HLS inequalities for systems, J. Euro. Math. Soc., 7 (2005), 413-448.
doi: 10.4171/JEMS/34. |
[29] |
T. Suzuki, Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity, Ann. Inst. Henri Poincaré Anal. Non Linéaire, 9 (1992), 367-397. |
[30] |
T. Suzuki, "Free Energy and Self-Interacting Particles,'' Progress in Nonlinear Differential Equations and their Applications, 62, Birkhäuser Boston, Inc., Boston, 2005.
doi: 10.1007/0-8176-4436-9. |
[31] |
T. Suzuki, "Mean Field Theories and Dual Variation,'' Atlantis Studies in Mathematics for Engineering and Science, 2, Atlantis Press, Paris; World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008. |
[32] |
T. Suzuki and T. Senba, "Applied Analysis, Mathematical Methods in Natural Science,'' Second edition, Imperial College Press, London, 2011. |
[33] |
T. Suzuki, Exclusion of boundary blowup for $2D$ chemotaxis system provided with Dirichlet condition for the Poisson part, preprint.
doi: 10.1016/j.matpur.2013.01.004. |
show all references
References:
[1] |
N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868.
doi: 10.1080/03605307908820113. |
[2] |
F. Bavaud, Equilibrium properties of the Vlasov functional: The generalized Poisson-Boltzmann-Emden equation, Rev. Modern Physics, 63 (1991), 129-149.
doi: 10.1103/RevModPhys.63.129. |
[3] |
P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl., 8 (1998), 715-743. |
[4] |
P. Biler, W. Hebisch and T. Nadzieja, The Debye system: existence and large time behavior of solutions, Nonlinear Analysis, 23 (1994), 1189-1209.
doi: 10.1016/0362-546X(94)90101-5. |
[5] |
E. Caglioti, P.-L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description, Comm. Math. Phys., 143 (1992), 501-525.
doi: 10.1007/BF02099262. |
[6] |
P.-H. Chavanis, Kinetic theory of $2D$ point vortices from a BBGKY-like hiearchy, Physica A, 387 (2008), 1123-1154.
doi: 10.1016/j.physa.2007.10.022. |
[7] |
P.-H. Chavanis, Two-dimensional Brownian vortices, Physica A, 387 (2008), 6917-6942.
doi: 10.1016/j.physa.2008.09.019. |
[8] |
C. Conca and E. Espejo, Threshold condition for global existence and blow-up to a radially symmetric drift-diffusion system, Applied Mathematics Letters, 25 (2012), 352-356.
doi: 10.1016/j.aml.2011.09.013. |
[9] |
C. Conca, E. Espejo and K. Vilches, Remarks on the blow-up and global existence for a two-species chemotactic Keller-Segel system in $R^2$, Euro. J. Appl. Math., 22 (2011), 553-580.
doi: 10.1017/S0956792511000258. |
[10] |
E. E. Espejo, M. Kurokiba and T. Suzuki, Blowup threshold and collapse mass separation for a drift-diffusion system in dimension two, preprint. |
[11] |
E. E. Espejo, A. Stevens and T. Suzuki, Simultaneous blowup and mass separation during collapse in an interacting system of chemotactic species, Differential and Integral Equations, 25 (2012), 251-288. |
[12] |
E. E. Espejo, A. Stevens and J. J. L. Velázquez, Simultaneous finite time blow-up in a two-species model for chemotaxis, Analysis, 29 (2009), 317-338.
doi: 10.1524/anly.2009.1029. |
[13] |
E. E. Espejo, A. Stevens and J. J. L. Velázquez, A note on non-simultaneous blow-up for a drift-diffusion model, Differential and Integral Equations, 23 (2010), 451-462. |
[14] |
G. L. Eyink and H. Spohn, Negative-temperature states and large-scale, long-lived vortices in two-dimensional turbulence, J. Statistical Physics, 70 (1993), 833-886.
doi: 10.1007/BF01053597. |
[15] |
H. Gajewski and K. Zacharias, Global behaviour of a reaction-diffusion system modelling chemotaxis, Math. Nachr., 195 (1998), 77-114.
doi: 10.1002/mana.19981950106. |
[16] |
W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824.
doi: 10.2307/2153966. |
[17] |
G. Joyce and D. Montgomery, Negative temperature states for two-dimensional guiding-centre plasma, J. Plasma Phys., 10 (1973), 107-121. |
[18] |
M. K. H. Kiessling, Statistical mechanics of classical particles with logarithmic interaction, Comm. Pure Appl. Math., 46 (1993), 27-56.
doi: 10.1002/cpa.3160460103. |
[19] |
M. Kurokiba and T. Ogawa, Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type, Differential and Integral Equations, 16 (2003), 427-452. |
[20] |
M. Kurokiba and T. Ogawa, Wellposedness of the drit-diffusion system in $L^p$ arising from the semiconductor device simulation, J. Math. Anal. Appl., 342 (2008), 1052-1067.
doi: 10.1016/j.jmaa.2007.11.017. |
[21] |
M. Kurokiba, T. Nagai and T. Ogawa, The uniform boundedness and threshold for the global existence of the radial solution to a drift-diffusion system, Comm. Pure Appl. Anal., 5 (2006), 97-106 |
[22] |
T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433. |
[23] |
K. Nagasaki and T. Suzuki, Asymptotic analysis for two-dimensional elliptic eivgnvalue problem with exponentially dominated nonlinearities, Asymptoitc Analysis, 3 (1990), 173-188. |
[24] |
P. K. Newton, "The $N$-Vortex Problem: Analytical Techniques," Applied Mathematical Sciences, 145, Springer-Verlag, New York, 2001.
doi: 10.1007/978-1-4684-9290-3. |
[25] |
L. Onsager, Statistical hydrodynamics, Suppl. Nuovo Cimento, 6 (1949), 279-287.
doi: 10.1007/BF02780991. |
[26] |
T. Senba and T. Suzuki, Chemotactic collapse in a parabolic-elliptic system of mathematical biology, Adv. Differential Equations, 6 (2001), 21-50. |
[27] |
T. Senba and T. Suzuki, Parabolic system of chemotaxis; blowup in a finite and in the infinite time, Meth. Appl. Anal., 8 (2001), 349-368. |
[28] |
I. Shafrir and G. Wolansky, Moser-Trudinger and logarithmic HLS inequalities for systems, J. Euro. Math. Soc., 7 (2005), 413-448.
doi: 10.4171/JEMS/34. |
[29] |
T. Suzuki, Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity, Ann. Inst. Henri Poincaré Anal. Non Linéaire, 9 (1992), 367-397. |
[30] |
T. Suzuki, "Free Energy and Self-Interacting Particles,'' Progress in Nonlinear Differential Equations and their Applications, 62, Birkhäuser Boston, Inc., Boston, 2005.
doi: 10.1007/0-8176-4436-9. |
[31] |
T. Suzuki, "Mean Field Theories and Dual Variation,'' Atlantis Studies in Mathematics for Engineering and Science, 2, Atlantis Press, Paris; World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008. |
[32] |
T. Suzuki and T. Senba, "Applied Analysis, Mathematical Methods in Natural Science,'' Second edition, Imperial College Press, London, 2011. |
[33] |
T. Suzuki, Exclusion of boundary blowup for $2D$ chemotaxis system provided with Dirichlet condition for the Poisson part, preprint.
doi: 10.1016/j.matpur.2013.01.004. |
[1] |
Gianluca Crippa, Milton C. Lopes Filho, Evelyne Miot, Helena J. Nussenzveig Lopes. Flows of vector fields with point singularities and the vortex-wave system. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2405-2417. doi: 10.3934/dcds.2016.36.2405 |
[2] |
Vikas S. Krishnamurthy. Liouville links and chains on the plane and associated stationary point vortex equilibria. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2383-2397. doi: 10.3934/cpaa.2022076 |
[3] |
Joseph Nebus. The Dirichlet quotient of point vortex interactions on the surface of the sphere examined by Monte Carlo experiments. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 125-136. doi: 10.3934/dcdsb.2005.5.125 |
[4] |
James Montaldi, Amna Shaddad. Generalized point vortex dynamics on $ \mathbb{CP} ^2 $. Journal of Geometric Mechanics, 2019, 11 (4) : 601-619. doi: 10.3934/jgm.2019030 |
[5] |
Xavier Perrot, Xavier Carton. Point-vortex interaction in an oscillatory deformation field: Hamiltonian dynamics, harmonic resonance and transition to chaos. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 971-995. doi: 10.3934/dcdsb.2009.11.971 |
[6] |
Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control and Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401 |
[7] |
Shijin Ding, Qiang Du. The global minimizers and vortex solutions to a Ginzburg-Landau model of superconducting films. Communications on Pure and Applied Analysis, 2002, 1 (3) : 327-340. doi: 10.3934/cpaa.2002.1.327 |
[8] |
Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201 |
[9] |
Nicola Bellomo, Youshan Tao. Stabilization in a chemotaxis model for virus infection. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 105-117. doi: 10.3934/dcdss.2020006 |
[10] |
Nicolas Vauchelet. Numerical simulation of a kinetic model for chemotaxis. Kinetic and Related Models, 2010, 3 (3) : 501-528. doi: 10.3934/krm.2010.3.501 |
[11] |
Kentarou Fujie, Akio Ito, Michael Winkler, Tomomi Yokota. Stabilization in a chemotaxis model for tumor invasion. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 151-169. doi: 10.3934/dcds.2016.36.151 |
[12] |
Hua Chen, Shaohua Wu. The moving boundary problem in a chemotaxis model. Communications on Pure and Applied Analysis, 2012, 11 (2) : 735-746. doi: 10.3934/cpaa.2012.11.735 |
[13] |
Hua Chen, Jian-Meng Li, Kelei Wang. On the vanishing viscosity limit of a chemotaxis model. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1963-1987. doi: 10.3934/dcds.2020101 |
[14] |
Alina Chertock, Alexander Kurganov, Xuefeng Wang, Yaping Wu. On a chemotaxis model with saturated chemotactic flux. Kinetic and Related Models, 2012, 5 (1) : 51-95. doi: 10.3934/krm.2012.5.51 |
[15] |
V. Styles. A note on the convergence in the limit of a long wave vortex density superconductivity model to the Bean model. Communications on Pure and Applied Analysis, 2002, 1 (4) : 485-494. doi: 10.3934/cpaa.2002.1.485 |
[16] |
Tong Li, Jeungeun Park. Traveling waves in a chemotaxis model with logistic growth. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6465-6480. doi: 10.3934/dcdsb.2019147 |
[17] |
Anne Nouri, Christian Schmeiser. Aggregated steady states of a kinetic model for chemotaxis. Kinetic and Related Models, 2017, 10 (1) : 313-327. doi: 10.3934/krm.2017013 |
[18] |
Manuel Delgado, Inmaculada Gayte, Cristian Morales-Rodrigo, Antonio Suárez. On a chemotaxis model with competitive terms arising in angiogenesis. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 177-202. doi: 10.3934/dcdss.2020010 |
[19] |
Xin Lai, Xinfu Chen, Mingxin Wang, Cong Qin, Yajing Zhang. Existence, uniqueness, and stability of bubble solutions of a chemotaxis model. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 805-832. doi: 10.3934/dcds.2016.36.805 |
[20] |
Shen Bian, Li Chen, Evangelos A. Latos. Chemotaxis model with nonlocal nonlinear reaction in the whole space. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5067-5083. doi: 10.3934/dcds.2018222 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]