
Previous Article
Brownian point vortices and ddmodel
 DCDSS Home
 This Issue
 Next Article
Solvability of boundary value problems for strongly degenerate parabolic equations with discontinuous coefficients
1.  Department of General Education, Salesian Polytechnic, 468 Oyamagaoka, Machidacity, Tokyo, 1940215 
We consider the type of equations under the zeroflux boundary conditions. In particular, we prove the existence and partial uniqueness of weak solutions to such problems. Our proof use the compactness theorem derived by Panov [14] and the estimate of degenerate diffusion term derived by KarlsenRisebroTowers [10].
References:
[1] 
J. Aleksić and D. Mitrovic, On the compactness for two dimensional scalar conservation law with discontinuous flux,, Comm. Math. Science, 4 (2009), 963. 
[2] 
L. Ambrosio, N. Fusco and Paliara, "Functions of Bounded Variation and Free Discontinuity Problems,", Oxford Science Publications, (2000). 
[3] 
R. Bürger, H. Frid and K. H. Karlsen, On the wellposedness of entropy solutions to conservation laws with a zeroflux boundary condition,, J. Math. Anal. Appl., 326 (2007), 108. doi: 10.1016/j.jmaa.2006.02.072. 
[4] 
J. Carrillo, Entropy solutions for nonlinear degenerate problems,, Arch. Rational. Anal., 147 (1999), 269. doi: 10.1007/s002050050152. 
[5] 
L. C. Evans and R. Gariepy, "Measure Theory and Fine Properties of Functions,", Studies in Advanced Math., (1992). 
[6] 
S. Evje, K. H. Karlsen and N. H. Risebro, A continuous dependence result for nonlinear degenerate parabolic equations with spatially dependent flux function,, in, 140, 141 (2001), 337. 
[7] 
J. Jimenez, Scalar conservation law with discontinuous flux in a bounded domain,, Discrete Contin. Dyn. Syst., 2007 (): 520. doi: 10.1007/s1066500791662. 
[8] 
K. H. Karlsen, M. Rascle and E. Tadmor, On the existence and compactness of a twodimensional resonant system of conservation laws,, Commun. Math. Sci., 5 (2007), 253. 
[9] 
K. H. Karlsen and N. H. Risebro, On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients,, Discrete Contin. Dyn., 9 (2003), 1081. doi: 10.3934/dcds.2003.9.1081. 
[10] 
K. H. Karlsen, N. H. Risebro and J. D. Towers, On a nonlinear degenerate parabolic transportdiffusion equation with a discontinuous coefficient,, Electron. J. Differential Equations, 28 (2002), 1. 
[11] 
K. H. Karlsen, N. H. Risebro and J. D. Towers, $L^1$ stability for entropy solutions of nonlinear degenerate parabolic convectivediffusion equations with discontinuous coefficients,, Skr. K. Vidensk. Selsk., 2003 (): 1. 
[12] 
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Translations of Mathematical Monographs, (1968). 
[13] 
C. Mascia, A. Porretta and A. Terracina, Nonhomogeneous Dirichlet problems for degenerate parabolichyperbolic equations,, Arch. Rational Mech. Anal., 163 (2002), 87. doi: 10.1007/s002050200184. 
[14] 
E. Yu. Panov, Existence and strong precompactness properties for entropy solutions of a firstorder quasilinear equation with discontinuous flux,, Arch. Rational Mech. Anal., 195 (2010), 643. doi: 10.1007/s002050090217x. 
[15] 
L. Tartar, Compensated compactness and applications to partial differential equations,, in, 39 (1979), 136. 
[16] 
A. Vasseur, Strong traces for solutions of multidimensional scalar conservation laws,, Arch. Ration. Mech. Anal., 160 (2001), 181. doi: 10.1007/s002050100157. 
[17] 
H. Watanabe and S. Oharu, $BV$entropy solutions to strongly degenerate parabolic equations,, Adv. Differential Equations, 15 (2010), 757. 
[18] 
H. Watanabe and S. Oharu, Strongly degenerate parabolic equations with nonlocal convective terms,, preprint., (). 
[19] 
W. P. Ziemer, "Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation,", Graduate Texts in Mathematics, 120 (1989). doi: 10.1007/9781461210153. 
show all references
References:
[1] 
J. Aleksić and D. Mitrovic, On the compactness for two dimensional scalar conservation law with discontinuous flux,, Comm. Math. Science, 4 (2009), 963. 
[2] 
L. Ambrosio, N. Fusco and Paliara, "Functions of Bounded Variation and Free Discontinuity Problems,", Oxford Science Publications, (2000). 
[3] 
R. Bürger, H. Frid and K. H. Karlsen, On the wellposedness of entropy solutions to conservation laws with a zeroflux boundary condition,, J. Math. Anal. Appl., 326 (2007), 108. doi: 10.1016/j.jmaa.2006.02.072. 
[4] 
J. Carrillo, Entropy solutions for nonlinear degenerate problems,, Arch. Rational. Anal., 147 (1999), 269. doi: 10.1007/s002050050152. 
[5] 
L. C. Evans and R. Gariepy, "Measure Theory and Fine Properties of Functions,", Studies in Advanced Math., (1992). 
[6] 
S. Evje, K. H. Karlsen and N. H. Risebro, A continuous dependence result for nonlinear degenerate parabolic equations with spatially dependent flux function,, in, 140, 141 (2001), 337. 
[7] 
J. Jimenez, Scalar conservation law with discontinuous flux in a bounded domain,, Discrete Contin. Dyn. Syst., 2007 (): 520. doi: 10.1007/s1066500791662. 
[8] 
K. H. Karlsen, M. Rascle and E. Tadmor, On the existence and compactness of a twodimensional resonant system of conservation laws,, Commun. Math. Sci., 5 (2007), 253. 
[9] 
K. H. Karlsen and N. H. Risebro, On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients,, Discrete Contin. Dyn., 9 (2003), 1081. doi: 10.3934/dcds.2003.9.1081. 
[10] 
K. H. Karlsen, N. H. Risebro and J. D. Towers, On a nonlinear degenerate parabolic transportdiffusion equation with a discontinuous coefficient,, Electron. J. Differential Equations, 28 (2002), 1. 
[11] 
K. H. Karlsen, N. H. Risebro and J. D. Towers, $L^1$ stability for entropy solutions of nonlinear degenerate parabolic convectivediffusion equations with discontinuous coefficients,, Skr. K. Vidensk. Selsk., 2003 (): 1. 
[12] 
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Translations of Mathematical Monographs, (1968). 
[13] 
C. Mascia, A. Porretta and A. Terracina, Nonhomogeneous Dirichlet problems for degenerate parabolichyperbolic equations,, Arch. Rational Mech. Anal., 163 (2002), 87. doi: 10.1007/s002050200184. 
[14] 
E. Yu. Panov, Existence and strong precompactness properties for entropy solutions of a firstorder quasilinear equation with discontinuous flux,, Arch. Rational Mech. Anal., 195 (2010), 643. doi: 10.1007/s002050090217x. 
[15] 
L. Tartar, Compensated compactness and applications to partial differential equations,, in, 39 (1979), 136. 
[16] 
A. Vasseur, Strong traces for solutions of multidimensional scalar conservation laws,, Arch. Ration. Mech. Anal., 160 (2001), 181. doi: 10.1007/s002050100157. 
[17] 
H. Watanabe and S. Oharu, $BV$entropy solutions to strongly degenerate parabolic equations,, Adv. Differential Equations, 15 (2010), 757. 
[18] 
H. Watanabe and S. Oharu, Strongly degenerate parabolic equations with nonlocal convective terms,, preprint., (). 
[19] 
W. P. Ziemer, "Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation,", Graduate Texts in Mathematics, 120 (1989). doi: 10.1007/9781461210153. 
[1] 
Hiroshi Watanabe. Existence and uniqueness of entropy solutions to strongly degenerate parabolic equations with discontinuous coefficients. Conference Publications, 2013, 2013 (special) : 781790. doi: 10.3934/proc.2013.2013.781 
[2] 
Chunlai Mu, Zhaoyin Xiang. Blowup behaviors for degenerate parabolic equations coupled via nonlinear boundary flux. Communications on Pure & Applied Analysis, 2007, 6 (2) : 487503. doi: 10.3934/cpaa.2007.6.487 
[3] 
Raluca Clendenen, Gisèle Ruiz Goldstein, Jerome A. Goldstein. Degenerate flux for dynamic boundary conditions in parabolic and hyperbolic equations. Discrete & Continuous Dynamical Systems  S, 2016, 9 (3) : 651660. doi: 10.3934/dcdss.2016019 
[4] 
Julien Jimenez. Scalar conservation law with discontinuous flux in a bounded domain. Conference Publications, 2007, 2007 (Special) : 520530. doi: 10.3934/proc.2007.2007.520 
[5] 
Zhiqing Liu, Zhong Bo Fang. Blowup phenomena for a nonlocal quasilinear parabolic equation with timedependent coefficients under nonlinear boundary flux. Discrete & Continuous Dynamical Systems  B, 2016, 21 (10) : 36193635. doi: 10.3934/dcdsb.2016113 
[6] 
Fabrizio Colombo, Davide Guidetti. Identification of the memory kernel in the strongly damped wave equation by a flux condition. Communications on Pure & Applied Analysis, 2009, 8 (2) : 601620. doi: 10.3934/cpaa.2009.8.601 
[7] 
Sébastien Gouëzel. An interval map with a spectral gap on Lipschitz functions, but not on bounded variation functions. Discrete & Continuous Dynamical Systems  A, 2009, 24 (4) : 12051208. doi: 10.3934/dcds.2009.24.1205 
[8] 
Yunho Kim, Luminita A. Vese. Image recovery using functions of bounded variation and Sobolev spaces of negative differentiability. Inverse Problems & Imaging, 2009, 3 (1) : 4368. doi: 10.3934/ipi.2009.3.43 
[9] 
Pierpaolo Soravia. Uniqueness results for fully nonlinear degenerate elliptic equations with discontinuous coefficients. Communications on Pure & Applied Analysis, 2006, 5 (1) : 213240. doi: 10.3934/cpaa.2006.5.213 
[10] 
Dung Le. Partial regularity of solutions to a class of strongly coupled degenerate parabolic systems. Conference Publications, 2005, 2005 (Special) : 576586. doi: 10.3934/proc.2005.2005.576 
[11] 
Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks & Heterogeneous Media, 2007, 2 (1) : 159179. doi: 10.3934/nhm.2007.2.159 
[12] 
Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869898. doi: 10.3934/ipi.2016025 
[13] 
Khadijah Sharaf. A perturbation result for a critical elliptic equation with zero Dirichlet boundary condition. Discrete & Continuous Dynamical Systems  A, 2017, 37 (3) : 16911706. doi: 10.3934/dcds.2017070 
[14] 
Sofia Giuffrè, Giovanna Idone. On linear and nonlinear elliptic boundary value problems in the plane with discontinuous coefficients. Discrete & Continuous Dynamical Systems  A, 2011, 31 (4) : 13471363. doi: 10.3934/dcds.2011.31.1347 
[15] 
Matthias Gerdts, Martin Kunkel. Convergence analysis of Euler discretization of controlstate constrained optimal control problems with controls of bounded variation. Journal of Industrial & Management Optimization, 2014, 10 (1) : 311336. doi: 10.3934/jimo.2014.10.311 
[16] 
Kenneth Hvistendahl Karlsen, Nils Henrik Risebro. On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients. Discrete & Continuous Dynamical Systems  A, 2003, 9 (5) : 10811104. doi: 10.3934/dcds.2003.9.1081 
[17] 
R.G. Duran, J.I. Etcheverry, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition. Discrete & Continuous Dynamical Systems  A, 1998, 4 (3) : 497506. doi: 10.3934/dcds.1998.4.497 
[18] 
Yizhuo Wang, Shangjiang Guo. A SIS reactiondiffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems  B, 2019, 24 (4) : 16271652. doi: 10.3934/dcdsb.2018223 
[19] 
Denis R. Akhmetov, Renato Spigler. $L^1$estimates for the higherorder derivatives of solutions to parabolic equations subject to initial values of bounded total variation. Communications on Pure & Applied Analysis, 2007, 6 (4) : 10511074. doi: 10.3934/cpaa.2007.6.1051 
[20] 
Kristian Bredies. Weak solutions of linear degenerate parabolic equations and an application in image processing. Communications on Pure & Applied Analysis, 2009, 8 (4) : 12031229. doi: 10.3934/cpaa.2009.8.1203 
2018 Impact Factor: 0.545
Tools
Metrics
Other articles
by authors
[Back to Top]