 Previous Article
 DCDSS Home
 This Issue

Next Article
Brownian point vortices and ddmodel
Solvability of boundary value problems for strongly degenerate parabolic equations with discontinuous coefficients
1.  Department of General Education, Salesian Polytechnic, 468 Oyamagaoka, Machidacity, Tokyo, 1940215 
We consider the type of equations under the zeroflux boundary conditions. In particular, we prove the existence and partial uniqueness of weak solutions to such problems. Our proof use the compactness theorem derived by Panov [14] and the estimate of degenerate diffusion term derived by KarlsenRisebroTowers [10].
References:
[1] 
J. Aleksić and D. Mitrovic, On the compactness for two dimensional scalar conservation law with discontinuous flux, Comm. Math. Science, 4 (2009), 963971. 
[2] 
L. Ambrosio, N. Fusco and Paliara, "Functions of Bounded Variation and Free Discontinuity Problems," Oxford Science Publications, 2000. 
[3] 
R. Bürger, H. Frid and K. H. Karlsen, On the wellposedness of entropy solutions to conservation laws with a zeroflux boundary condition, J. Math. Anal. Appl., 326 (2007), 108120. doi: 10.1016/j.jmaa.2006.02.072. 
[4] 
J. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Rational. Anal., 147 (1999), 269361. doi: 10.1007/s002050050152. 
[5] 
L. C. Evans and R. Gariepy, "Measure Theory and Fine Properties of Functions," Studies in Advanced Math., CRC Press, London, 1992. 
[6] 
S. Evje, K. H. Karlsen and N. H. Risebro, A continuous dependence result for nonlinear degenerate parabolic equations with spatially dependent flux function, in "Hyperbolic Problems: Theory, Numerics, Applications, Vol. I, II" (Magdeburg, 2000), Internat. Ser. Numer. Math., 140, 141, Birkhäuser, Basel, (2001), 337346. 
[7] 
J. Jimenez, Scalar conservation law with discontinuous flux in a bounded domain,, Discrete Contin. Dyn. Syst., 2007 (): 520. doi: 10.1007/s1066500791662. 
[8] 
K. H. Karlsen, M. Rascle and E. Tadmor, On the existence and compactness of a twodimensional resonant system of conservation laws, Commun. Math. Sci., 5 (2007), 253265. 
[9] 
K. H. Karlsen and N. H. Risebro, On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients, Discrete Contin. Dyn., 9 (2003), 10811104. doi: 10.3934/dcds.2003.9.1081. 
[10] 
K. H. Karlsen, N. H. Risebro and J. D. Towers, On a nonlinear degenerate parabolic transportdiffusion equation with a discontinuous coefficient, Electron. J. Differential Equations, 28 (2002), 123 (electronic). 
[11] 
K. H. Karlsen, N. H. Risebro and J. D. Towers, $L^1$ stability for entropy solutions of nonlinear degenerate parabolic convectivediffusion equations with discontinuous coefficients,, Skr. K. Vidensk. Selsk., 2003 (): 1. 
[12] 
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1968. 
[13] 
C. Mascia, A. Porretta and A. Terracina, Nonhomogeneous Dirichlet problems for degenerate parabolichyperbolic equations, Arch. Rational Mech. Anal., 163 (2002), 87124. doi: 10.1007/s002050200184. 
[14] 
E. Yu. Panov, Existence and strong precompactness properties for entropy solutions of a firstorder quasilinear equation with discontinuous flux, Arch. Rational Mech. Anal., 195 (2010), 643673. doi: 10.1007/s002050090217x. 
[15] 
L. Tartar, Compensated compactness and applications to partial differential equations, in "Nonlinear Analysis and Mechanics: HeriotWatt Symposium, Vol. IV," Res. Notes in Math., 39, Pitman, Boston, Mass.London, (1979), 136212. 
[16] 
A. Vasseur, Strong traces for solutions of multidimensional scalar conservation laws, Arch. Ration. Mech. Anal., 160 (2001), 181193. doi: 10.1007/s002050100157. 
[17] 
H. Watanabe and S. Oharu, $BV$entropy solutions to strongly degenerate parabolic equations, Adv. Differential Equations, 15 (2010), 757800. 
[18] 
H. Watanabe and S. Oharu, Strongly degenerate parabolic equations with nonlocal convective terms,, preprint., (). 
[19] 
W. P. Ziemer, "Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation," Graduate Texts in Mathematics, 120, SpringerVerlag, New York, 1989. doi: 10.1007/9781461210153. 
show all references
References:
[1] 
J. Aleksić and D. Mitrovic, On the compactness for two dimensional scalar conservation law with discontinuous flux, Comm. Math. Science, 4 (2009), 963971. 
[2] 
L. Ambrosio, N. Fusco and Paliara, "Functions of Bounded Variation and Free Discontinuity Problems," Oxford Science Publications, 2000. 
[3] 
R. Bürger, H. Frid and K. H. Karlsen, On the wellposedness of entropy solutions to conservation laws with a zeroflux boundary condition, J. Math. Anal. Appl., 326 (2007), 108120. doi: 10.1016/j.jmaa.2006.02.072. 
[4] 
J. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Rational. Anal., 147 (1999), 269361. doi: 10.1007/s002050050152. 
[5] 
L. C. Evans and R. Gariepy, "Measure Theory and Fine Properties of Functions," Studies in Advanced Math., CRC Press, London, 1992. 
[6] 
S. Evje, K. H. Karlsen and N. H. Risebro, A continuous dependence result for nonlinear degenerate parabolic equations with spatially dependent flux function, in "Hyperbolic Problems: Theory, Numerics, Applications, Vol. I, II" (Magdeburg, 2000), Internat. Ser. Numer. Math., 140, 141, Birkhäuser, Basel, (2001), 337346. 
[7] 
J. Jimenez, Scalar conservation law with discontinuous flux in a bounded domain,, Discrete Contin. Dyn. Syst., 2007 (): 520. doi: 10.1007/s1066500791662. 
[8] 
K. H. Karlsen, M. Rascle and E. Tadmor, On the existence and compactness of a twodimensional resonant system of conservation laws, Commun. Math. Sci., 5 (2007), 253265. 
[9] 
K. H. Karlsen and N. H. Risebro, On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients, Discrete Contin. Dyn., 9 (2003), 10811104. doi: 10.3934/dcds.2003.9.1081. 
[10] 
K. H. Karlsen, N. H. Risebro and J. D. Towers, On a nonlinear degenerate parabolic transportdiffusion equation with a discontinuous coefficient, Electron. J. Differential Equations, 28 (2002), 123 (electronic). 
[11] 
K. H. Karlsen, N. H. Risebro and J. D. Towers, $L^1$ stability for entropy solutions of nonlinear degenerate parabolic convectivediffusion equations with discontinuous coefficients,, Skr. K. Vidensk. Selsk., 2003 (): 1. 
[12] 
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1968. 
[13] 
C. Mascia, A. Porretta and A. Terracina, Nonhomogeneous Dirichlet problems for degenerate parabolichyperbolic equations, Arch. Rational Mech. Anal., 163 (2002), 87124. doi: 10.1007/s002050200184. 
[14] 
E. Yu. Panov, Existence and strong precompactness properties for entropy solutions of a firstorder quasilinear equation with discontinuous flux, Arch. Rational Mech. Anal., 195 (2010), 643673. doi: 10.1007/s002050090217x. 
[15] 
L. Tartar, Compensated compactness and applications to partial differential equations, in "Nonlinear Analysis and Mechanics: HeriotWatt Symposium, Vol. IV," Res. Notes in Math., 39, Pitman, Boston, Mass.London, (1979), 136212. 
[16] 
A. Vasseur, Strong traces for solutions of multidimensional scalar conservation laws, Arch. Ration. Mech. Anal., 160 (2001), 181193. doi: 10.1007/s002050100157. 
[17] 
H. Watanabe and S. Oharu, $BV$entropy solutions to strongly degenerate parabolic equations, Adv. Differential Equations, 15 (2010), 757800. 
[18] 
H. Watanabe and S. Oharu, Strongly degenerate parabolic equations with nonlocal convective terms,, preprint., (). 
[19] 
W. P. Ziemer, "Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation," Graduate Texts in Mathematics, 120, SpringerVerlag, New York, 1989. doi: 10.1007/9781461210153. 
[1] 
Hiroshi Watanabe. Existence and uniqueness of entropy solutions to strongly degenerate parabolic equations with discontinuous coefficients. Conference Publications, 2013, 2013 (special) : 781790. doi: 10.3934/proc.2013.2013.781 
[2] 
Chunlai Mu, Zhaoyin Xiang. Blowup behaviors for degenerate parabolic equations coupled via nonlinear boundary flux. Communications on Pure and Applied Analysis, 2007, 6 (2) : 487503. doi: 10.3934/cpaa.2007.6.487 
[3] 
Raluca Clendenen, Gisèle Ruiz Goldstein, Jerome A. Goldstein. Degenerate flux for dynamic boundary conditions in parabolic and hyperbolic equations. Discrete and Continuous Dynamical Systems  S, 2016, 9 (3) : 651660. doi: 10.3934/dcdss.2016019 
[4] 
Julien Jimenez. Scalar conservation law with discontinuous flux in a bounded domain. Conference Publications, 2007, 2007 (Special) : 520530. doi: 10.3934/proc.2007.2007.520 
[5] 
Harun Karsli, Purshottam Narain Agrawal. Rate of convergence of Stancu type modified $ q $Gamma operators for functions with derivatives of bounded variation. Mathematical Foundations of Computing, 2022 doi: 10.3934/mfc.2022002 
[6] 
Zhiqing Liu, Zhong Bo Fang. Blowup phenomena for a nonlocal quasilinear parabolic equation with timedependent coefficients under nonlinear boundary flux. Discrete and Continuous Dynamical Systems  B, 2016, 21 (10) : 36193635. doi: 10.3934/dcdsb.2016113 
[7] 
Fabrizio Colombo, Davide Guidetti. Identification of the memory kernel in the strongly damped wave equation by a flux condition. Communications on Pure and Applied Analysis, 2009, 8 (2) : 601620. doi: 10.3934/cpaa.2009.8.601 
[8] 
Sébastien Gouëzel. An interval map with a spectral gap on Lipschitz functions, but not on bounded variation functions. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 12051208. doi: 10.3934/dcds.2009.24.1205 
[9] 
Kaifang Liu, Lunji Song, Shan Zhao. A new overpenalized weak galerkin method. Part Ⅰ: Secondorder elliptic problems. Discrete and Continuous Dynamical Systems  B, 2021, 26 (5) : 24112428. doi: 10.3934/dcdsb.2020184 
[10] 
Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new overpenalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete and Continuous Dynamical Systems  B, 2021, 26 (5) : 25812598. doi: 10.3934/dcdsb.2020196 
[11] 
Yunho Kim, Luminita A. Vese. Image recovery using functions of bounded variation and Sobolev spaces of negative differentiability. Inverse Problems and Imaging, 2009, 3 (1) : 4368. doi: 10.3934/ipi.2009.3.43 
[12] 
Pierpaolo Soravia. Uniqueness results for fully nonlinear degenerate elliptic equations with discontinuous coefficients. Communications on Pure and Applied Analysis, 2006, 5 (1) : 213240. doi: 10.3934/cpaa.2006.5.213 
[13] 
Dung Le. Partial regularity of solutions to a class of strongly coupled degenerate parabolic systems. Conference Publications, 2005, 2005 (Special) : 576586. doi: 10.3934/proc.2005.2005.576 
[14] 
Meihua Wei, Yanling Li, Xi Wei. Stability and bifurcation with singularity for a glycolysis model under noflux boundary condition. Discrete and Continuous Dynamical Systems  B, 2019, 24 (9) : 52035224. doi: 10.3934/dcdsb.2019129 
[15] 
Mauro Garavello, Roberto Natalini, Benedetto Piccoli, Andrea Terracina. Conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2007, 2 (1) : 159179. doi: 10.3934/nhm.2007.2.159 
[16] 
Khadijah Sharaf. A perturbation result for a critical elliptic equation with zero Dirichlet boundary condition. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 16911706. doi: 10.3934/dcds.2017070 
[17] 
Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems and Imaging, 2016, 10 (4) : 869898. doi: 10.3934/ipi.2016025 
[18] 
Sofia Giuffrè, Giovanna Idone. On linear and nonlinear elliptic boundary value problems in the plane with discontinuous coefficients. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 13471363. doi: 10.3934/dcds.2011.31.1347 
[19] 
Matthias Gerdts, Martin Kunkel. Convergence analysis of Euler discretization of controlstate constrained optimal control problems with controls of bounded variation. Journal of Industrial and Management Optimization, 2014, 10 (1) : 311336. doi: 10.3934/jimo.2014.10.311 
[20] 
R.G. Duran, J.I. Etcheverry, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 497506. doi: 10.3934/dcds.1998.4.497 
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]