April  2014, 7(2): 191-205. doi: 10.3934/dcdss.2014.7.191

Study of degenerate parabolic system modeling the hydrogen displacement in a nuclear waste repository

1. 

CEA Saclay, DEN/DANS/DM2S/SFME/LSET5, 91191 Gif Sur Yvette, France

2. 

King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences & Engineering, 23955-6900, Thuwal, Saudi Arabia

3. 

Ecole Centrale de Nantes, Département d' Informatique et Mathématiques, Laboratoire de Mathématiques Jean Leray (UMR 6629 CNRS), 1, rue de la Noé, BP 92101, France

Received  April 2013 Revised  July 2013 Published  September 2013

Our goal is the mathematical analysis of a two phase (liquid and gas) two components (water and hydrogen) system modeling the hydrogen displacement in a storage site for radioactive waste. We suppose that the water is only in the liquid phase and is incompressible. The hydrogen in the gas phase is supposed compressible and could be dissolved into the water with the Henry law. The flow is described by the conservation of the mass of each components. The model is treated without simplified assumptions on the gas density. This model is degenerated due to vanishing terms. We establish an existence result for the nonlinear degenerate parabolic system based on new energy estimate on pressures.
Citation: Florian Caro, Bilal Saad, Mazen Saad. Study of degenerate parabolic system modeling the hydrogen displacement in a nuclear waste repository. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 191-205. doi: 10.3934/dcdss.2014.7.191
References:
[1]

H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations,, Math. Z., 3 (1983), 311. doi: 10.1007/BF01176474. Google Scholar

[2]

B. Amaziane, S. Antontsev, L. Pankratov and A. Piatnitski, Homogenization of immiscible compressible two-phase flow in porous media: Application to gas migration in a nuclear waste repository,, Multiscale Modeling and Simulation, 8 (2010), 2023. doi: 10.1137/100790215. Google Scholar

[3]

B. Amaziane and M. Jurak, Formulation of immiscible compressible two-phase flow in porous media,, Comptes Rendus Mécanique, 7 (2008), 600. doi: 10.1016/j.crme.2008.04.008. Google Scholar

[4]

B. Andreianov, M. Bendahmane, K. H. Karlsen and S. Ouaro, Well-posedness results for triply nonlinear degenerate parabolic equations,, Journal of Differential Equations, 247 (2009), 277. doi: 10.1016/j.jde.2009.03.001. Google Scholar

[5]

M. Bendahmane and K. H. Karlsen, Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations,, SIAM J. Math. Anal., 36 (2004), 405. doi: 10.1137/S0036141003428937. Google Scholar

[6]

A. Bourgeat, M. Jurak and F. Smai, Two-phase, partially miscible flow and transport modeling in porous media; application to gaz migration in a nuclear waste repository,, Computational Geosciences, 4 (2009), 309. Google Scholar

[7]

F. Caro, B. Saad and M. Saad, Two-component two-compressible flow in a porous medium,, Acta Applicandae Mathematicae, 117 (2012), 15. doi: 10.1007/s10440-011-9648-0. Google Scholar

[8]

G. Chavent and J. Jaffré, "Mathematical Models and Finite Elements for Reservoir Simulation: Single Phase, Multiphase, and Multicomponent Flows through Porous Media,", Studies in Mathematics and its Applications, (1986). Google Scholar

[9]

Z. Chen, Degenerate two-phase incompressible flow. I. Existence, uniqueness and regularity of a weak solution,, Journal of Differential Equations, 171 (2001), 203. doi: 10.1006/jdeq.2000.3848. Google Scholar

[10]

Z. Chen, Degenerate two-phase incompressible flow. II. Regularity, stability and stabilization,, Journal of Differential Equations, 186 (2002), 345. doi: 10.1016/S0022-0396(02)00027-X. Google Scholar

[11]

C. Choquet, Asymptotic analysis of a nonlinear parabolic problem modelling miscible compressible displacement in porous media,, Nonlinear Differential Equations and Appl., 15 (2008), 757. doi: 10.1007/s00030-008-8010-3. Google Scholar

[12]

C. Choquet, On a fully nonlinear parabolic problem modelling miscible compressible displacement in porous media,, Journal of Mathematical Analysis and Applications, 339 (2008), 1112. doi: 10.1016/j.jmaa.2007.07.037. Google Scholar

[13]

F. Z. Daïm, R. Eymard and D. Hilhorst, Existence of a solution for two phase flow in porous media: The case that the porosity depends on pressure,, Journal of Mathematical Analysis and Applications, 326 (2007), 332. doi: 10.1016/j.jmaa.2006.02.082. Google Scholar

[14]

X. Feng, On existence and uniqueness results for a coupled systems modelling miscible displacement in porous media,, J. Math. Anal. Appl., 194 (1995), 883. doi: 10.1006/jmaa.1995.1334. Google Scholar

[15]

G. Gagneux and M. Madaune-Tort, "Analyse Mathématique de Modèles Non Linéaires de l'Ingéniere Pétrolière,", Mathématiques & Applications (Berlin), (1996). Google Scholar

[16]

C. Galusinski and M. Saad, A nonlinear degenerate system modelling water-gas flows in porous media,, Discrete and Continuous Dynamical System Ser. B, 9 (2008), 281. Google Scholar

[17]

C. Galusinski and M. Saad, Two compressible immiscible fluids in porous media,, J. Differential Equations, 244 (2008), 1741. doi: 10.1016/j.jde.2008.01.013. Google Scholar

[18]

C. Galusinski and M. Saad, Weak solutions for immiscible compressible multifluid flows in porous media,, C. R. Acad. Sci. Paris, 347 (2009), 249. doi: 10.1016/j.crma.2009.01.023. Google Scholar

[19]

Z. Khalil and M. Saad, Solutions to a model for compressible immiscible two phase flow in porous media,, Electronic Journal of Differential Equations, 2010 (2010). Google Scholar

[20]

Z. Khalil and M. Saad, On a fully nonlinear degenerate parabolic system modeling immiscible gas-water displacement in porous media,, Nonlinear Analysis, 12 (2011), 1591. doi: 10.1016/j.nonrwa.2010.10.015. Google Scholar

[21]

A. Mikelić, An existence result for the equations describing a gas-liquid two-phase flow,, Comptes rendus Mécanique, 337 (2009), 226. Google Scholar

[22]

F. Smaï, A model of multiphase flow and transport in porous media applied to gas migration in underground nuclear waste repository,, C. R. Acad. Sci. Paris, 347 (2009), 527. doi: 10.1016/j.crma.2009.03.011. Google Scholar

[23]

, J. Talandier., Available from: , (). Google Scholar

[24]

E. Zeidler, "Nonlinear Functional Analysis and its Applications. I. Fixed-Point Theorems,", Springer-Verlag, (1993). Google Scholar

show all references

References:
[1]

H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations,, Math. Z., 3 (1983), 311. doi: 10.1007/BF01176474. Google Scholar

[2]

B. Amaziane, S. Antontsev, L. Pankratov and A. Piatnitski, Homogenization of immiscible compressible two-phase flow in porous media: Application to gas migration in a nuclear waste repository,, Multiscale Modeling and Simulation, 8 (2010), 2023. doi: 10.1137/100790215. Google Scholar

[3]

B. Amaziane and M. Jurak, Formulation of immiscible compressible two-phase flow in porous media,, Comptes Rendus Mécanique, 7 (2008), 600. doi: 10.1016/j.crme.2008.04.008. Google Scholar

[4]

B. Andreianov, M. Bendahmane, K. H. Karlsen and S. Ouaro, Well-posedness results for triply nonlinear degenerate parabolic equations,, Journal of Differential Equations, 247 (2009), 277. doi: 10.1016/j.jde.2009.03.001. Google Scholar

[5]

M. Bendahmane and K. H. Karlsen, Renormalized entropy solutions for quasi-linear anisotropic degenerate parabolic equations,, SIAM J. Math. Anal., 36 (2004), 405. doi: 10.1137/S0036141003428937. Google Scholar

[6]

A. Bourgeat, M. Jurak and F. Smai, Two-phase, partially miscible flow and transport modeling in porous media; application to gaz migration in a nuclear waste repository,, Computational Geosciences, 4 (2009), 309. Google Scholar

[7]

F. Caro, B. Saad and M. Saad, Two-component two-compressible flow in a porous medium,, Acta Applicandae Mathematicae, 117 (2012), 15. doi: 10.1007/s10440-011-9648-0. Google Scholar

[8]

G. Chavent and J. Jaffré, "Mathematical Models and Finite Elements for Reservoir Simulation: Single Phase, Multiphase, and Multicomponent Flows through Porous Media,", Studies in Mathematics and its Applications, (1986). Google Scholar

[9]

Z. Chen, Degenerate two-phase incompressible flow. I. Existence, uniqueness and regularity of a weak solution,, Journal of Differential Equations, 171 (2001), 203. doi: 10.1006/jdeq.2000.3848. Google Scholar

[10]

Z. Chen, Degenerate two-phase incompressible flow. II. Regularity, stability and stabilization,, Journal of Differential Equations, 186 (2002), 345. doi: 10.1016/S0022-0396(02)00027-X. Google Scholar

[11]

C. Choquet, Asymptotic analysis of a nonlinear parabolic problem modelling miscible compressible displacement in porous media,, Nonlinear Differential Equations and Appl., 15 (2008), 757. doi: 10.1007/s00030-008-8010-3. Google Scholar

[12]

C. Choquet, On a fully nonlinear parabolic problem modelling miscible compressible displacement in porous media,, Journal of Mathematical Analysis and Applications, 339 (2008), 1112. doi: 10.1016/j.jmaa.2007.07.037. Google Scholar

[13]

F. Z. Daïm, R. Eymard and D. Hilhorst, Existence of a solution for two phase flow in porous media: The case that the porosity depends on pressure,, Journal of Mathematical Analysis and Applications, 326 (2007), 332. doi: 10.1016/j.jmaa.2006.02.082. Google Scholar

[14]

X. Feng, On existence and uniqueness results for a coupled systems modelling miscible displacement in porous media,, J. Math. Anal. Appl., 194 (1995), 883. doi: 10.1006/jmaa.1995.1334. Google Scholar

[15]

G. Gagneux and M. Madaune-Tort, "Analyse Mathématique de Modèles Non Linéaires de l'Ingéniere Pétrolière,", Mathématiques & Applications (Berlin), (1996). Google Scholar

[16]

C. Galusinski and M. Saad, A nonlinear degenerate system modelling water-gas flows in porous media,, Discrete and Continuous Dynamical System Ser. B, 9 (2008), 281. Google Scholar

[17]

C. Galusinski and M. Saad, Two compressible immiscible fluids in porous media,, J. Differential Equations, 244 (2008), 1741. doi: 10.1016/j.jde.2008.01.013. Google Scholar

[18]

C. Galusinski and M. Saad, Weak solutions for immiscible compressible multifluid flows in porous media,, C. R. Acad. Sci. Paris, 347 (2009), 249. doi: 10.1016/j.crma.2009.01.023. Google Scholar

[19]

Z. Khalil and M. Saad, Solutions to a model for compressible immiscible two phase flow in porous media,, Electronic Journal of Differential Equations, 2010 (2010). Google Scholar

[20]

Z. Khalil and M. Saad, On a fully nonlinear degenerate parabolic system modeling immiscible gas-water displacement in porous media,, Nonlinear Analysis, 12 (2011), 1591. doi: 10.1016/j.nonrwa.2010.10.015. Google Scholar

[21]

A. Mikelić, An existence result for the equations describing a gas-liquid two-phase flow,, Comptes rendus Mécanique, 337 (2009), 226. Google Scholar

[22]

F. Smaï, A model of multiphase flow and transport in porous media applied to gas migration in underground nuclear waste repository,, C. R. Acad. Sci. Paris, 347 (2009), 527. doi: 10.1016/j.crma.2009.03.011. Google Scholar

[23]

, J. Talandier., Available from: , (). Google Scholar

[24]

E. Zeidler, "Nonlinear Functional Analysis and its Applications. I. Fixed-Point Theorems,", Springer-Verlag, (1993). Google Scholar

[1]

Shifeng Geng, Lina Zhang. Large-time behavior of solutions for the system of compressible adiabatic flow through porous media with nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2211-2228. doi: 10.3934/cpaa.2014.13.2211

[2]

Cédric Galusinski, Mazen Saad. A nonlinear degenerate system modelling water-gas flows in porous media. Discrete & Continuous Dynamical Systems - B, 2008, 9 (2) : 281-308. doi: 10.3934/dcdsb.2008.9.281

[3]

Shifeng Geng, Zhen Wang. Best asymptotic profile for the system of compressible adiabatic flow through porous media on quadrant. Communications on Pure & Applied Analysis, 2012, 11 (2) : 475-500. doi: 10.3934/cpaa.2012.11.475

[4]

Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. An improved homogenization result for immiscible compressible two-phase flow in porous media. Networks & Heterogeneous Media, 2017, 12 (1) : 147-171. doi: 10.3934/nhm.2017006

[5]

Bilal Saad, Mazen Saad. Numerical analysis of a non equilibrium two-component two-compressible flow in porous media. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 317-346. doi: 10.3934/dcdss.2014.7.317

[6]

Yangyang Qiao, Huanyao Wen, Steinar Evje. Compressible and viscous two-phase flow in porous media based on mixture theory formulation. Networks & Heterogeneous Media, 2019, 14 (3) : 489-536. doi: 10.3934/nhm.2019020

[7]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-26. doi: 10.3934/dcds.2019226

[8]

Tariel Sanikidze, A.F. Tedeev. On the temporal decay estimates for the degenerate parabolic system. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1755-1768. doi: 10.3934/cpaa.2013.12.1755

[9]

Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. The existence of weak solutions to immiscible compressible two-phase flow in porous media: The case of fields with different rock-types. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1217-1251. doi: 10.3934/dcdsb.2013.18.1217

[10]

Michiel Bertsch, Roberta Dal Passo, Lorenzo Giacomelli, Giuseppe Tomassetti. A nonlocal and fully nonlinear degenerate parabolic system from strain-gradient plasticity. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 15-43. doi: 10.3934/dcdsb.2011.15.15

[11]

Cedric Galusinski, Mazen Saad. Water-gas flow in porous media. Conference Publications, 2005, 2005 (Special) : 307-316. doi: 10.3934/proc.2005.2005.307

[12]

Xian-Gao Liu, Jie Qing. Globally weak solutions to the flow of compressible liquid crystals system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 757-788. doi: 10.3934/dcds.2013.33.757

[13]

Ting Zhang. The modeling error of well treatment for unsteady flow in porous media. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2171-2185. doi: 10.3934/dcdsb.2015.20.2171

[14]

Kenneth H. Karlsen, Süleyman Ulusoy. On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks & Heterogeneous Media, 2016, 11 (1) : 181-201. doi: 10.3934/nhm.2016.11.181

[15]

Andrey Shishkov, Laurent Véron. Propagation of singularities of nonlinear heat flow in fissured media. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1769-1782. doi: 10.3934/cpaa.2013.12.1769

[16]

Genni Fragnelli, Paolo Nistri, Duccio Papini. Corrigendum: Nnon-trivial non-negative periodic solutions of a system of doubly degenerate parabolic equations with nonlocal terms. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3831-3834. doi: 10.3934/dcds.2013.33.3831

[17]

Genni Fragnelli, Paolo Nistri, Duccio Papini. Non-trivial non-negative periodic solutions of a system of doubly degenerate parabolic equations with nonlocal terms. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 35-64. doi: 10.3934/dcds.2011.31.35

[18]

Tian Xiang. Dynamics in a parabolic-elliptic chemotaxis system with growth source and nonlinear secretion. Communications on Pure & Applied Analysis, 2019, 18 (1) : 255-284. doi: 10.3934/cpaa.2019014

[19]

Wenxiong Chen, Congming Li, Eric S. Wright. On a nonlinear parabolic system-modeling chemical reactions in rivers. Communications on Pure & Applied Analysis, 2005, 4 (4) : 889-899. doi: 10.3934/cpaa.2005.4.889

[20]

Francisco Ortegón Gallego, María Teresa González Montesinos. Existence of a capacity solution to a coupled nonlinear parabolic--elliptic system. Communications on Pure & Applied Analysis, 2007, 6 (1) : 23-42. doi: 10.3934/cpaa.2007.6.23

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]