\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Two-dimensional individual clustering model

Abstract Related Papers Cited by
  • This paper is devoted to study a model of individual clustering with two specific reproduction rates in two space dimensions. Given $q>2$ and an initial condition in $W^{1,q}(\Omega)$, the local existence and uniqueness of solution have been shown in [6]. In this paper we give a detailed proof of existence of global solution.
    Mathematics Subject Classification: Primary: 35K20, 35B40, 35M33, 35J47, 35Q92.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Amann, "Linear and Quasilinear Parabolic Problems. Volume I . Abstract Linear Theory," Monographs in Mathematics, 89, Birkhäuser Boston, Inc., Boston, MA, 1995.doi: 10.1007/978-3-0348-9221-6.

    [2]

    T. Cazenave and A. Haraux, "An Introduction to Semilinear Evolution Equations," Oxford Lecture Series in Mathematics and it Applications, 13, The Clarendon Press, Oxford University Press, New York, 1998.

    [3]

    J. P. Dias, A simplified variational model for the bidimensional coupled evolution equations of a nematic liquid crystal, J. Math. Anal. Appl., 67 (1979), 525-541.doi: 10.1016/0022-247X(79)90041-6.

    [4]

    J. P. Dias, Un problème aux limites pour un système d'équations non linéaires tridimensionnel, Bolletino U. M. I. B (5), 16 (1979), 22-31.

    [5]

    P. Grindrod, Models of individual aggregation or clustering in single and multi-species communities, J. Math. Biol., 26 (1988), 651-660.doi: 10.1007/BF00276146.

    [6]

    E. Nasreddine, Well-posedness for a model of individual clustering, arXiv:1211.2969v1, (2012).

    [7]

    M. Schoenauer, Quelques résultats de régularité pour un système elliptique avec conditions aux limites couplées, Annales de la Faculté des Sciences de Toulouse 5e Série, 2 (1980), 125-135.doi: 10.5802/afst.550.

    [8]

    Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.doi: 10.1016/j.jde.2011.08.019.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(74) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return