Citation: |
[1] |
H. Amann, "Linear and Quasilinear Parabolic Problems. Volume I . Abstract Linear Theory," Monographs in Mathematics, 89, Birkhäuser Boston, Inc., Boston, MA, 1995.doi: 10.1007/978-3-0348-9221-6. |
[2] |
T. Cazenave and A. Haraux, "An Introduction to Semilinear Evolution Equations," Oxford Lecture Series in Mathematics and it Applications, 13, The Clarendon Press, Oxford University Press, New York, 1998. |
[3] |
J. P. Dias, A simplified variational model for the bidimensional coupled evolution equations of a nematic liquid crystal, J. Math. Anal. Appl., 67 (1979), 525-541.doi: 10.1016/0022-247X(79)90041-6. |
[4] |
J. P. Dias, Un problème aux limites pour un système d'équations non linéaires tridimensionnel, Bolletino U. M. I. B (5), 16 (1979), 22-31. |
[5] |
P. Grindrod, Models of individual aggregation or clustering in single and multi-species communities, J. Math. Biol., 26 (1988), 651-660.doi: 10.1007/BF00276146. |
[6] |
E. Nasreddine, Well-posedness for a model of individual clustering, arXiv:1211.2969v1, (2012). |
[7] |
M. Schoenauer, Quelques résultats de régularité pour un système elliptique avec conditions aux limites couplées, Annales de la Faculté des Sciences de Toulouse 5e Série, 2 (1980), 125-135.doi: 10.5802/afst.550. |
[8] |
Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.doi: 10.1016/j.jde.2011.08.019. |