April  2014, 7(2): 307-316. doi: 10.3934/dcdss.2014.7.307

Two-dimensional individual clustering model

1. 

Institut de Mathématiques de Toulouse, Université de Toulouse, F-31062 Toulouse cedex 9, France

Received  February 2013 Revised  April 2013 Published  September 2013

This paper is devoted to study a model of individual clustering with two specific reproduction rates in two space dimensions. Given $q>2$ and an initial condition in $W^{1,q}(\Omega)$, the local existence and uniqueness of solution have been shown in [6]. In this paper we give a detailed proof of existence of global solution.
Citation: Elissar Nasreddine. Two-dimensional individual clustering model. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 307-316. doi: 10.3934/dcdss.2014.7.307
References:
[1]

H. Amann, "Linear and Quasilinear Parabolic Problems. Volume I . Abstract Linear Theory,", Monographs in Mathematics, 89 (1995).  doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[2]

T. Cazenave and A. Haraux, "An Introduction to Semilinear Evolution Equations,", Oxford Lecture Series in Mathematics and it Applications, 13 (1998).   Google Scholar

[3]

J. P. Dias, A simplified variational model for the bidimensional coupled evolution equations of a nematic liquid crystal,, J. Math. Anal. Appl., 67 (1979), 525.  doi: 10.1016/0022-247X(79)90041-6.  Google Scholar

[4]

J. P. Dias, Un problème aux limites pour un système d'équations non linéaires tridimensionnel,, Bolletino U. M. I. B (5), 16 (1979), 22.   Google Scholar

[5]

P. Grindrod, Models of individual aggregation or clustering in single and multi-species communities,, J. Math. Biol., 26 (1988), 651.  doi: 10.1007/BF00276146.  Google Scholar

[6]

E. Nasreddine, Well-posedness for a model of individual clustering,, , (2012).   Google Scholar

[7]

M. Schoenauer, Quelques résultats de régularité pour un système elliptique avec conditions aux limites couplées,, Annales de la Faculté des Sciences de Toulouse 5e Série, 2 (1980), 125.  doi: 10.5802/afst.550.  Google Scholar

[8]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations, 252 (2012), 692.  doi: 10.1016/j.jde.2011.08.019.  Google Scholar

show all references

References:
[1]

H. Amann, "Linear and Quasilinear Parabolic Problems. Volume I . Abstract Linear Theory,", Monographs in Mathematics, 89 (1995).  doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[2]

T. Cazenave and A. Haraux, "An Introduction to Semilinear Evolution Equations,", Oxford Lecture Series in Mathematics and it Applications, 13 (1998).   Google Scholar

[3]

J. P. Dias, A simplified variational model for the bidimensional coupled evolution equations of a nematic liquid crystal,, J. Math. Anal. Appl., 67 (1979), 525.  doi: 10.1016/0022-247X(79)90041-6.  Google Scholar

[4]

J. P. Dias, Un problème aux limites pour un système d'équations non linéaires tridimensionnel,, Bolletino U. M. I. B (5), 16 (1979), 22.   Google Scholar

[5]

P. Grindrod, Models of individual aggregation or clustering in single and multi-species communities,, J. Math. Biol., 26 (1988), 651.  doi: 10.1007/BF00276146.  Google Scholar

[6]

E. Nasreddine, Well-posedness for a model of individual clustering,, , (2012).   Google Scholar

[7]

M. Schoenauer, Quelques résultats de régularité pour un système elliptique avec conditions aux limites couplées,, Annales de la Faculté des Sciences de Toulouse 5e Série, 2 (1980), 125.  doi: 10.5802/afst.550.  Google Scholar

[8]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations, 252 (2012), 692.  doi: 10.1016/j.jde.2011.08.019.  Google Scholar

[1]

Jinhuan Wang, Li Chen, Liang Hong. Parabolic elliptic type Keller-Segel system on the whole space case. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1061-1084. doi: 10.3934/dcds.2016.36.1061

[2]

Yu-Juan Sun, Li Zhang, Wan-Tong Li, Zhi-Cheng Wang. Entire solutions in nonlocal monostable equations: Asymmetric case. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1049-1072. doi: 10.3934/cpaa.2019051

[3]

Luigi C. Berselli. An elementary approach to the 3D Navier-Stokes equations with Navier boundary conditions: Existence and uniqueness of various classes of solutions in the flat boundary case.. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 199-219. doi: 10.3934/dcdss.2010.3.199

[4]

Giuseppina di Blasio, Filomena Feo, Maria Rosaria Posteraro. Existence results for nonlinear elliptic equations related to Gauss measure in a limit case. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1497-1506. doi: 10.3934/cpaa.2008.7.1497

[5]

Kentarou Fujie, Takasi Senba. Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 81-102. doi: 10.3934/dcdsb.2016.21.81

[6]

Tomasz Cieślak, Kentarou Fujie. Global existence in the 1D quasilinear parabolic-elliptic chemotaxis system with critical nonlinearity. Discrete & Continuous Dynamical Systems - S, 2020, 13 (2) : 165-176. doi: 10.3934/dcdss.2020009

[7]

Mingzhu Wu, Zuodong Yang. Existence of boundary blow-up solutions for a class of quasiliner elliptic systems for the subcritical case. Communications on Pure & Applied Analysis, 2007, 6 (2) : 531-540. doi: 10.3934/cpaa.2007.6.531

[8]

Arthur Ramiandrisoa. Nonlinear heat equation: the radial case. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 849-870. doi: 10.3934/dcds.1999.5.849

[9]

Wenxiong Chen, Congming Li. A priori estimate for the Nirenberg problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 225-233. doi: 10.3934/dcdss.2008.1.225

[10]

J. F. Padial. Existence and estimate of the location of the free-boundary for a non local inverse elliptic-parabolic problem arising in nuclear fusion. Conference Publications, 2011, 2011 (Special) : 1176-1185. doi: 10.3934/proc.2011.2011.1176

[11]

Michel Cristofol, Patricia Gaitan, Kati Niinimäki, Olivier Poisson. Inverse problem for a coupled parabolic system with discontinuous conductivities: One-dimensional case. Inverse Problems & Imaging, 2013, 7 (1) : 159-182. doi: 10.3934/ipi.2013.7.159

[12]

Sami Baraket, Soumaya Sâanouni, Nihed Trabelsi. Singular limit solutions for a 2-dimensional semilinear elliptic system of Liouville type in some general case. Discrete & Continuous Dynamical Systems - A, 2020, 40 (2) : 1013-1063. doi: 10.3934/dcds.2020069

[13]

José Godoy, Nolbert Morales, Manuel Zamora. Existence and multiplicity of periodic solutions to an indefinite singular equation with two singularities. The degenerate case. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4137-4156. doi: 10.3934/dcds.2019167

[14]

Marcelo M. Disconzi, Igor Kukavica. A priori estimates for the 3D compressible free-boundary Euler equations with surface tension in the case of a liquid. Evolution Equations & Control Theory, 2019, 8 (3) : 503-542. doi: 10.3934/eect.2019025

[15]

Jong-Shenq Guo, Satoshi Sasayama, Chi-Jen Wang. Blowup rate estimate for a system of semilinear parabolic equations. Communications on Pure & Applied Analysis, 2009, 8 (2) : 711-718. doi: 10.3934/cpaa.2009.8.711

[16]

Francisco Ortegón Gallego, María Teresa González Montesinos. Existence of a capacity solution to a coupled nonlinear parabolic--elliptic system. Communications on Pure & Applied Analysis, 2007, 6 (1) : 23-42. doi: 10.3934/cpaa.2007.6.23

[17]

Pavol Quittner, Philippe Souplet. A priori estimates of global solutions of superlinear parabolic problems without variational structure. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1277-1292. doi: 10.3934/dcds.2003.9.1277

[18]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[19]

Peng Gao. Global Carleman estimate for the Kawahara equation and its applications. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1853-1874. doi: 10.3934/cpaa.2018088

[20]

Chiara Leone, Anna Verde, Giovanni Pisante. Higher integrability results for non smooth parabolic systems: The subquadratic case. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 177-190. doi: 10.3934/dcdsb.2009.11.177

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]