-
Previous Article
Crystalline motion of spiral-shaped polygonal curves with a tip motion
- DCDS-S Home
- This Issue
-
Next Article
A thermohydraulics model with temperature dependent constraint on velocity fields
Existence and linear stability of solutions of the ballistic VSC model
1. | VU University Amsterdam, Faculty of Sciences, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands |
2. | TU Eindhoven, Faculty of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven, Netherlands, Netherlands |
References:
[1] |
S. Bartnicki-Garcia, F. Hergert and G. Giertz, Computer simulation of fungal morphogenesis and the mathematical basis for hyphal (tip) growth, Protoplasma, 153 (1989), 46-57.
doi: 10.1007/BF01322464. |
[2] |
S. Bartnicki-Garcia, C. E. Bracker and G. Giertz, Mapping the growth of fungal hyphae: Orthogonal cell wall expansion during tip growth and the role of turgor, Biophys. J., 79 (2000), 2382-2390.
doi: 10.1016/S0006-3495(00)76483-6. |
[3] |
S. Bartnicki-Garcia and G. Giertz, A three-dimensional model of fungal morphogenesis based on the vesicle supply center concept, J. Theor. Biol., 208 (2001), 151-164. |
[4] |
N. G. de Bruijn, "Asymptotic Methods in Analysis," Third edition, North-Holland Publishing Company, 1994. |
[5] |
E. Eggen, "Self-Regulating Tip Growth, Modeling Cell Wall Ageing," Master's Thesis, Utrecht University, 2006. |
[6] |
C. Gerhardt, Flow of Nonconvex Hypersurfaces into Spheres, J. Diff Geom., 32 (1990), 299-314. |
[7] |
A. Goriely and M. Tabor, Self-similar tip growth in filamentary organisms, Phys. Rev. Lett., 90 (2003), 108101.
doi: 10.1103/PhysRevLett.90.108101. |
[8] |
G. Huisken and T. Ilmanen, A note on the inverse mean curvature flow, in "Proc. Workshop on Nonl. Part. Diff. Equ.," Saitama University, Sept. 1997. Available from: http://www.math.ethz.ch/~ilmanen/papers/saitama.ps |
[9] |
G. Huisken and T. Ilmanen, Higher regularity of the inverse mean curvature flow, J. Diff Geom., 80 (2008), 433-451. Available from: http://www.math.ethz.ch/~ilmanen/papers/imcfharnack.ps |
[10] |
A. Koch, The problem of hyphal growth in streptomycetes and fungi, J. Theor. Biol., 171 (1994), 137-150.
doi: 10.1006/jtbi.1994.1219. |
[11] |
S. Tindemans, "Modeling Tip Growth in Fungal Hyphae," Master's thesis, University of Amsterdam, 2004.
doi: 10.1016/j.jtbi.2005.07.004. |
[12] |
S. Tindemans, N. Kern and B. Mulder, The diffusive vesicle supply center model for tip growth in fungal hyphae, J. Theor. Biol., 238 (2006), 937-948.
doi: 10.1016/j.jtbi.2005.07.004. |
[13] |
H. Triebel, "Higher Analysis," Hochschulbücher für Mathematik [University Books for Mathematics], Johann Ambrosius Barth Verlag GmbH, Leipzig, 1992. |
[14] |
J. Urbas, On the expansion of starshaped hypersurfaces by symmetric function of their principal curvatures, Math. Z., 205 (1990), 355-372.
doi: 10.1007/BF02571249. |
[15] |
J. Weidmann, "Linear Operators in Hilbert Spaces," Graduate Texts in Mathematics, 68, Springer-Verlag, New York-Berlin, 1980 |
show all references
References:
[1] |
S. Bartnicki-Garcia, F. Hergert and G. Giertz, Computer simulation of fungal morphogenesis and the mathematical basis for hyphal (tip) growth, Protoplasma, 153 (1989), 46-57.
doi: 10.1007/BF01322464. |
[2] |
S. Bartnicki-Garcia, C. E. Bracker and G. Giertz, Mapping the growth of fungal hyphae: Orthogonal cell wall expansion during tip growth and the role of turgor, Biophys. J., 79 (2000), 2382-2390.
doi: 10.1016/S0006-3495(00)76483-6. |
[3] |
S. Bartnicki-Garcia and G. Giertz, A three-dimensional model of fungal morphogenesis based on the vesicle supply center concept, J. Theor. Biol., 208 (2001), 151-164. |
[4] |
N. G. de Bruijn, "Asymptotic Methods in Analysis," Third edition, North-Holland Publishing Company, 1994. |
[5] |
E. Eggen, "Self-Regulating Tip Growth, Modeling Cell Wall Ageing," Master's Thesis, Utrecht University, 2006. |
[6] |
C. Gerhardt, Flow of Nonconvex Hypersurfaces into Spheres, J. Diff Geom., 32 (1990), 299-314. |
[7] |
A. Goriely and M. Tabor, Self-similar tip growth in filamentary organisms, Phys. Rev. Lett., 90 (2003), 108101.
doi: 10.1103/PhysRevLett.90.108101. |
[8] |
G. Huisken and T. Ilmanen, A note on the inverse mean curvature flow, in "Proc. Workshop on Nonl. Part. Diff. Equ.," Saitama University, Sept. 1997. Available from: http://www.math.ethz.ch/~ilmanen/papers/saitama.ps |
[9] |
G. Huisken and T. Ilmanen, Higher regularity of the inverse mean curvature flow, J. Diff Geom., 80 (2008), 433-451. Available from: http://www.math.ethz.ch/~ilmanen/papers/imcfharnack.ps |
[10] |
A. Koch, The problem of hyphal growth in streptomycetes and fungi, J. Theor. Biol., 171 (1994), 137-150.
doi: 10.1006/jtbi.1994.1219. |
[11] |
S. Tindemans, "Modeling Tip Growth in Fungal Hyphae," Master's thesis, University of Amsterdam, 2004.
doi: 10.1016/j.jtbi.2005.07.004. |
[12] |
S. Tindemans, N. Kern and B. Mulder, The diffusive vesicle supply center model for tip growth in fungal hyphae, J. Theor. Biol., 238 (2006), 937-948.
doi: 10.1016/j.jtbi.2005.07.004. |
[13] |
H. Triebel, "Higher Analysis," Hochschulbücher für Mathematik [University Books for Mathematics], Johann Ambrosius Barth Verlag GmbH, Leipzig, 1992. |
[14] |
J. Urbas, On the expansion of starshaped hypersurfaces by symmetric function of their principal curvatures, Math. Z., 205 (1990), 355-372.
doi: 10.1007/BF02571249. |
[15] |
J. Weidmann, "Linear Operators in Hilbert Spaces," Graduate Texts in Mathematics, 68, Springer-Verlag, New York-Berlin, 1980 |
[1] |
Harunori Monobe, Hirokazu Ninomiya. Multiple existence of traveling waves of a free boundary problem describing cell motility. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 789-799. doi: 10.3934/dcdsb.2014.19.789 |
[2] |
Harunori Monobe, Hirokazu Ninomiya. Traveling wave solutions with convex domains for a free boundary problem. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 905-914. doi: 10.3934/dcds.2017037 |
[3] |
Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1797-1809. doi: 10.3934/dcdsb.2021028 |
[4] |
Shihe Xu. Analysis of a delayed free boundary problem for tumor growth. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 293-308. doi: 10.3934/dcdsb.2011.15.293 |
[5] |
Harunori Monobe. Behavior of radially symmetric solutions for a free boundary problem related to cell motility. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 989-997. doi: 10.3934/dcdss.2015.8.989 |
[6] |
Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 |
[7] |
Jian-Guo Liu, Min Tang, Li Wang, Zhennan Zhou. Analysis and computation of some tumor growth models with nutrient: From cell density models to free boundary dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3011-3035. doi: 10.3934/dcdsb.2018297 |
[8] |
Junde Wu. Bifurcation for a free boundary problem modeling the growth of necrotic multilayered tumors. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3399-3411. doi: 10.3934/dcds.2019140 |
[9] |
Zejia Wang, Suzhen Xu, Huijuan Song. Stationary solutions of a free boundary problem modeling growth of angiogenesis tumor with inhibitor. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2593-2605. doi: 10.3934/dcdsb.2018129 |
[10] |
Shihe Xu, Yinhui Chen, Meng Bai. Analysis of a free boundary problem for avascular tumor growth with a periodic supply of nutrients. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 997-1008. doi: 10.3934/dcdsb.2016.21.997 |
[11] |
Weiqing Xie. A free boundary problem arising from the process of Czochralski crystal growth. Conference Publications, 2001, 2001 (Special) : 380-385. doi: 10.3934/proc.2001.2001.380 |
[12] |
Cunming Liu, Jianli Liu. Stability of traveling wave solutions to Cauchy problem of diagnolizable quasilinear hyperbolic systems. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4735-4749. doi: 10.3934/dcds.2014.34.4735 |
[13] |
Jonathan E. Rubin. A nonlocal eigenvalue problem for the stability of a traveling wave in a neuronal medium. Discrete and Continuous Dynamical Systems, 2004, 10 (4) : 925-940. doi: 10.3934/dcds.2004.10.925 |
[14] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[15] |
Guangying Lv, Mingxin Wang. Existence, uniqueness and stability of traveling wave fronts of discrete quasi-linear equations with delay. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 415-433. doi: 10.3934/dcdsb.2010.13.415 |
[16] |
Junde Wu, Shangbin Cui. Asymptotic behavior of solutions of a free boundary problem modelling the growth of tumors with Stokes equations. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 625-651. doi: 10.3934/dcds.2009.24.625 |
[17] |
Junde Wu, Shangbin Cui. Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 737-765. doi: 10.3934/dcds.2010.26.737 |
[18] |
Shihe Xu, Meng Bai, Fangwei Zhang. Analysis of a free boundary problem for tumor growth with Gibbs-Thomson relation and time delays. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3535-3551. doi: 10.3934/dcdsb.2017213 |
[19] |
Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084 |
[20] |
Feimin Huang, Xiaoding Shi, Yi Wang. Stability of viscous shock wave for compressible Navier-Stokes equations with free boundary. Kinetic and Related Models, 2010, 3 (3) : 409-425. doi: 10.3934/krm.2010.3.409 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]