June  2014, 7(3): 363-377. doi: 10.3934/dcdss.2014.7.363

Interaction of road networks and pedestrian motion at crosswalks

1. 

Department of Mathematics, University of Kaiserslautern, 67663 Kaiserslautern, Germany, Germany

Received  May 2013 Revised  July 2013 Published  January 2014

In the present paper we discuss the coupling of traffic flow with pedestrian motion. First we review the coupling of the Lighthill-Whitham model for road traffic and the Hughes pedestrian model as presented in [5]. In different numerical examples we investigate the mutual interaction of both dynamics. A special focus is given on the possible placement of crosswalks to facilitate the passage for the pedestrians over a crowded street.
Citation: Raul Borsche, Anne Meurer. Interaction of road networks and pedestrian motion at crosswalks. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 363-377. doi: 10.3934/dcdss.2014.7.363
References:
[1]

A. Aw, A. Klar, T. Materne and M. Rascle, Derivation of continuum traffic flow models from microscopic follow-the-leader models,, SIAM J. Appl. Math., 63 (2002), 259.  doi: 10.1137/S0036139900380955.  Google Scholar

[2]

A. Aw and M. Rascle, Resurrection of second order models of traffic flow,, SIAM J. Appl. Math., 60 (2000), 916.  doi: 10.1137/S0036139997332099.  Google Scholar

[3]

N. Bellomo and C. Dogbe, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives,, SIAM Review, 53 (2011), 409.  doi: 10.1137/090746677.  Google Scholar

[4]

F. Berthelin, P. Degond, M. Delitla and M. Rascle, A model for the formation and evolution of traffic jams,, Arch. Rat. Mech. Anal., 187 (2008), 185.  doi: 10.1007/s00205-007-0061-9.  Google Scholar

[5]

R. Borsche, A. Klar, S. Kühn and A. Meurer, Coupling traffic flow networks to pedestrian motion,, Math. Models Methods Appl. Sci., 24 (2014), 213.  doi: 10.1142/S0218202513400113.  Google Scholar

[6]

G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network,, SIAM J. Math. Anal., 3 (2005), 1862.  doi: 10.1137/S0036141004402683.  Google Scholar

[7]

R. Colombo, M. Garavello and M. Lecureux-Mercier, A class of non-local models for pedestrian traffic,, MMMAS, 22 (2012).  doi: 10.1142/S0218202511500230.  Google Scholar

[8]

M. Di Francesco, P. A. Markowich, J. F. Pietschmann and M. T. Wolfram, On the Hughes model for pedestrian flow: The one-dimensional case,, J. Differential Equations, 250 (2011), 1334.  doi: 10.1016/j.jde.2010.10.015.  Google Scholar

[9]

P. Goatin, The Aw-Rascle vehicular traffic flow model with phase transitions,, Math. Comput. Modelling, 44 (2006), 287.  doi: 10.1016/j.mcm.2006.01.016.  Google Scholar

[10]

J. Greenberg, Extension and amplification of the Aw-Rascle model,, SIAM J. Appl. Math., 62 (2001), 729.  doi: 10.1137/S0036139900378657.  Google Scholar

[11]

A. Fuegenschuh, S. Goettlich, M. Herty, A. Klar and A. Martin, A discrete optimization approach to large scale supply networks based on partial differential equations,, SIAM Scient. Computing, 30 (2008), 1490.  doi: 10.1137/060663799.  Google Scholar

[12]

D. Helbing, Traffic and related self-driven many-particle systems,, Rev. Modern Phys., 73 (2001), 1067.  doi: 10.1103/RevModPhys.73.1067.  Google Scholar

[13]

M. Herty and A. Klar, Modeling, simulation and optimization of traffic flow networks,, SIAM Sci. Comp., 25 (2003), 1066.  doi: 10.1137/S106482750241459X.  Google Scholar

[14]

H. Holden and N. Risebro, A mathematical model of traffic flow on a network of unidirectional road,, SIAM J. Math. Anal., 4 (1995), 999.  doi: 10.1137/S0036141093243289.  Google Scholar

[15]

R. L. Hughes, A continuum theory for the flow of pedestrians,, Transp. Res. Part B: Methodological, 36 (2002), 507.  doi: 10.1016/S0191-2615(01)00015-7.  Google Scholar

[16]

R. L. Hughes, The flow of human crowds,, Annu. Rev. Fluid Mech., 35 (2003), 169.  doi: 10.1146/annurev.fluid.35.101101.161136.  Google Scholar

[17]

J. Lebacque and M. Khoshyaran, First order macroscopic traffic flow models for networks in the context of dynamic assignment,, in Transportation PlanningState of the Art, (2002).  doi: 10.1007/0-306-48220-7_8.  Google Scholar

[18]

J. A. Sethian, Fast marching methods,, SIAM Review, 41 (1999), 199.  doi: 10.1137/S0036144598347059.  Google Scholar

[19]

E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics,, Springer, (2009).  doi: 10.1007/b79761.  Google Scholar

[20]

G. Whitham, Linear and Nonlinear Waves,, Wiley, (1974).   Google Scholar

[21]

M. Zhang, A non-equilibrium traffic flow model devoid of gas-like behavior,, Transp. Res. B, 36 (2002), 275.   Google Scholar

show all references

References:
[1]

A. Aw, A. Klar, T. Materne and M. Rascle, Derivation of continuum traffic flow models from microscopic follow-the-leader models,, SIAM J. Appl. Math., 63 (2002), 259.  doi: 10.1137/S0036139900380955.  Google Scholar

[2]

A. Aw and M. Rascle, Resurrection of second order models of traffic flow,, SIAM J. Appl. Math., 60 (2000), 916.  doi: 10.1137/S0036139997332099.  Google Scholar

[3]

N. Bellomo and C. Dogbe, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives,, SIAM Review, 53 (2011), 409.  doi: 10.1137/090746677.  Google Scholar

[4]

F. Berthelin, P. Degond, M. Delitla and M. Rascle, A model for the formation and evolution of traffic jams,, Arch. Rat. Mech. Anal., 187 (2008), 185.  doi: 10.1007/s00205-007-0061-9.  Google Scholar

[5]

R. Borsche, A. Klar, S. Kühn and A. Meurer, Coupling traffic flow networks to pedestrian motion,, Math. Models Methods Appl. Sci., 24 (2014), 213.  doi: 10.1142/S0218202513400113.  Google Scholar

[6]

G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network,, SIAM J. Math. Anal., 3 (2005), 1862.  doi: 10.1137/S0036141004402683.  Google Scholar

[7]

R. Colombo, M. Garavello and M. Lecureux-Mercier, A class of non-local models for pedestrian traffic,, MMMAS, 22 (2012).  doi: 10.1142/S0218202511500230.  Google Scholar

[8]

M. Di Francesco, P. A. Markowich, J. F. Pietschmann and M. T. Wolfram, On the Hughes model for pedestrian flow: The one-dimensional case,, J. Differential Equations, 250 (2011), 1334.  doi: 10.1016/j.jde.2010.10.015.  Google Scholar

[9]

P. Goatin, The Aw-Rascle vehicular traffic flow model with phase transitions,, Math. Comput. Modelling, 44 (2006), 287.  doi: 10.1016/j.mcm.2006.01.016.  Google Scholar

[10]

J. Greenberg, Extension and amplification of the Aw-Rascle model,, SIAM J. Appl. Math., 62 (2001), 729.  doi: 10.1137/S0036139900378657.  Google Scholar

[11]

A. Fuegenschuh, S. Goettlich, M. Herty, A. Klar and A. Martin, A discrete optimization approach to large scale supply networks based on partial differential equations,, SIAM Scient. Computing, 30 (2008), 1490.  doi: 10.1137/060663799.  Google Scholar

[12]

D. Helbing, Traffic and related self-driven many-particle systems,, Rev. Modern Phys., 73 (2001), 1067.  doi: 10.1103/RevModPhys.73.1067.  Google Scholar

[13]

M. Herty and A. Klar, Modeling, simulation and optimization of traffic flow networks,, SIAM Sci. Comp., 25 (2003), 1066.  doi: 10.1137/S106482750241459X.  Google Scholar

[14]

H. Holden and N. Risebro, A mathematical model of traffic flow on a network of unidirectional road,, SIAM J. Math. Anal., 4 (1995), 999.  doi: 10.1137/S0036141093243289.  Google Scholar

[15]

R. L. Hughes, A continuum theory for the flow of pedestrians,, Transp. Res. Part B: Methodological, 36 (2002), 507.  doi: 10.1016/S0191-2615(01)00015-7.  Google Scholar

[16]

R. L. Hughes, The flow of human crowds,, Annu. Rev. Fluid Mech., 35 (2003), 169.  doi: 10.1146/annurev.fluid.35.101101.161136.  Google Scholar

[17]

J. Lebacque and M. Khoshyaran, First order macroscopic traffic flow models for networks in the context of dynamic assignment,, in Transportation PlanningState of the Art, (2002).  doi: 10.1007/0-306-48220-7_8.  Google Scholar

[18]

J. A. Sethian, Fast marching methods,, SIAM Review, 41 (1999), 199.  doi: 10.1137/S0036144598347059.  Google Scholar

[19]

E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics,, Springer, (2009).  doi: 10.1007/b79761.  Google Scholar

[20]

G. Whitham, Linear and Nonlinear Waves,, Wiley, (1974).   Google Scholar

[21]

M. Zhang, A non-equilibrium traffic flow model devoid of gas-like behavior,, Transp. Res. B, 36 (2002), 275.   Google Scholar

[1]

Xiaoxian Tang, Jie Wang. Bistability of sequestration networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1337-1357. doi: 10.3934/dcdsb.2020165

[2]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[3]

Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020034

[4]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[5]

Yu-Jhe Huang, Zhong-Fu Huang, Jonq Juang, Yu-Hao Liang. Flocking of non-identical Cucker-Smale models on general coupling network. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1111-1127. doi: 10.3934/dcdsb.2020155

[6]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[7]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[8]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[9]

Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond. A new model for the emergence of blood capillary networks. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021001

[10]

Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021001

[11]

Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455

[12]

Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021002

[13]

Hongfei Yang, Xiaofeng Ding, Raymond Chan, Hui Hu, Yaxin Peng, Tieyong Zeng. A new initialization method based on normed statistical spaces in deep networks. Inverse Problems & Imaging, 2021, 15 (1) : 147-158. doi: 10.3934/ipi.2020045

[14]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[15]

Niklas Kolbe, Nikolaos Sfakianakis, Christian Stinner, Christina Surulescu, Jonas Lenz. Modeling multiple taxis: Tumor invasion with phenotypic heterogeneity, haptotaxis, and unilateral interspecies repellence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 443-481. doi: 10.3934/dcdsb.2020284

[16]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

[17]

Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283

[18]

Bingyan Liu, Xiongbing Ye, Xianzhou Dong, Lei Ni. Branching improved Deep Q Networks for solving pursuit-evasion strategy solution of spacecraft. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021016

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]