Citation: |
[1] |
C. Appert-Rolland, J. Cividini and H. J. Hilhorst, Frozen shuffle update for an asymmetric exclusion process with open boundary conditions, J. Stat. Mech., (2011), P10013. |
[2] |
O. Biham, A. A. Middleton and D. Levine, Self-organization and a dynamic transition in traffic-flow models, Phys. Rev. A, 46 (1992), R6124-R6127.doi: 10.1103/PhysRevA.46.R6124. |
[3] |
D. Chowdhury, L. Santen and A. Schadschneider, Statistical physics of vehicular traffic and some related systems, Phys. Rep., 329 (2000), 199-329.doi: 10.1016/S0370-1573(99)00117-9. |
[4] |
J. Cividini and C. Appert-Rolland, Wake-mediated interaction between driven particles crossing a perpendicular flow, J. Stat. Mech., 2013 (2013), P07015.doi: 10.1088/1742-5468/2013/07/P07015. |
[5] |
J. Cividini, C. Appert-Rolland and H. J. Hilhorst, Diagonal patterns and chevron effect in intersecting traffic flows, Europhys. Lett., 102 (2013), 20002.doi: 10.1209/0295-5075/102/20002. |
[6] |
J. Cividini, H. J. Hilhorst and C. Appert-Rolland, Crossing pedestrian traffic flows,diagonal stripe pattern, and chevron effect, J. Phys. A: Math. Theor., 46 (2013), 29 pp. |
[7] |
Z.-J. Ding, R. Jiang and B.-H. Wang, Traffic flow in the Biham-Middleton-Levine model with random update rule, Phys. Rev. E, 83 (2011), 047101.doi: 10.1103/PhysRevE.83.047101. |
[8] |
R. M. D'Souza, Coexisting phases and lattice dependence of a cellular automaton model for traffic flow, Phys. Rev. E, 71 (2005), 066112.doi: 10.1103/PhysRevE.71.066112. |
[9] |
H. J. Hilhorst and C. Appert-Rolland, A multi-lane TASEP model for crossing pedestrian traffic flows, J. Stat. Mech., 2012 (2012), P06009.doi: 10.1088/1742-5468/2012/06/P06009. |
[10] |
J. M. Molera, F. C. Martinez, J. A. Cuesta and R. Britot, Theoretical approach to two-dimensional trafIic flow models, Phys. Rev. E, 51 (1995), 175-187.doi: 10.1103/PhysRevE.51.175. |
[11] |
N. H. Packard and S. Wolfram, Two-dimensional cellular automata, J. Stat. Phys., 38 (1985), 901-946.doi: 10.1007/BF01010423. |
[12] |
S.-I. Tadaki, Two-dimensional cellular automaton model of traffic flow with open boundaries, Phys. Rev. E, 54 (1996), 2409-2413.doi: 10.1103/PhysRevE.54.2409. |
[13] |
S. Wolfram, Statistical mechanics of cellular automata, Rev. Mod. Phys., 55 (1983), 601-644.doi: 10.1103/RevModPhys.55.601. |