June  2014, 7(3): 449-462. doi: 10.3934/dcdss.2014.7.449

Fundamental diagrams for kinetic equations of traffic flow

1. 

Department of Mathematics and Computer Science, University of Cagliari, Viale Merello 92, 09123 Cagliari, Italy

2. 

Istituto per le Applicazioni del Calcolo "M. Picone", Consiglio Nazionale delle Ricerche, Via dei Taurini 19, 00185 Roma

Received  May 2013 Revised  August 2013 Published  January 2014

In this paper we investigate the ability of some recently introduced discrete kinetic models of vehicular traffic to catch, in their large time behavior, typical features of theoretical fundamental diagrams. Specifically, we address the so-called ``spatially homogeneous problem'' and, in the representative case of an exploratory model, we study the qualitative properties of its solutions for a generic number of discrete microscopic states. This includes, in particular, asymptotic trends and equilibria, whence fundamental diagrams originate.
Citation: Luisa Fermo, Andrea Tosin. Fundamental diagrams for kinetic equations of traffic flow. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 449-462. doi: 10.3934/dcdss.2014.7.449
References:
[1]

A. Bellouquid, E. De Angelis and L. Fermo, Towards the modeling of vehicular traffic as a complex system: A kinetic theory approach, Math. Models Methods Appl. Sci., 22 (2012), 1140003, 35 pp. doi: 10.1142/S0218202511400033.

[2]

S. Blandin, G. Bretti, C. Cutolo and B. Piccoli, Numerical simulations of traffic data via fluid dynamic approach, Appl. Math. Comput., 210 (2009), 441-454. doi: 10.1016/j.amc.2009.01.057.

[3]

S. Blandin, D. Work, P. Goatin, B. Piccoli and A. Bayen, A general phase transition model for vehicular traffic, SIAM J. Appl. Math., 71 (2011), 107-127. doi: 10.1137/090754467.

[4]

I. Bonzani and L. Mussone, From experiments to hydrodynamic traffic flow models. I. Modelling and parameter identification, Math. Comput. Modelling, 37 (2003), 1435-1442. doi: 10.1016/S0895-7177(03)90051-3.

[5]

R. M. Colombo, Hyperbolic phase transitions in traffic flow, SIAM J. Appl. Math., 63 (2002), 708-721. doi: 10.1137/S0036139901393184.

[6]

V. Coscia, M. Delitala and P. Frasca, On the mathematical theory of vehicular traffic flow. II. Discrete velocity kinetic models, Internat. J. Non-Linear Mech., 42 (2007), 411-421. doi: 10.1016/j.ijnonlinmec.2006.02.008.

[7]

C. F. Daganzo, A variational formulation of kinematic waves: Solution methods, Transport. Res. B-Meth., 39 (2005), 934-950. doi: 10.1016/j.trb.2004.05.003.

[8]

P. Degond and M. Delitala, Modelling and simulation of vehicular traffic jam formation, Kinet. Relat. Models, 1 (2008), 279-293. doi: 10.3934/krm.2008.1.279.

[9]

M. Delitala and A. Tosin, Mathematical modeling of vehicular traffic: A discrete kinetic theory approach, Math. Models Methods Appl. Sci., 17 (2007), 901-932. doi: 10.1142/S0218202507002157.

[10]

L. Fermo and A. Tosin, A fully-discrete-state kinetic theory approach to modeling vehicular traffic, SIAM J. Appl. Math., 73 (2013), 1533-1556. doi: 10.1137/120897110.

[11]

M. Garavello and B. Piccoli, Traffic Flow on Networks - Conservation Laws Models, AIMS Series on Applied Mathematics, 1, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006.

[12]

M. Günther, A. Klar, T. Materne and R. Wegener, Multivalued fundamental diagrams and stop and go waves for continuum traffic flow equations, SIAM J. Appl. Math., 64 (2003), 468-483. doi: 10.1137/S0036139902404700.

[13]

B. S. Kerner, The Physics of Traffic, Springer, Berlin, 2004. doi: 10.1007/978-3-540-40986-1.

[14]

J. Li and M. Zhang, Fundamental diagram of traffic flow, Transp. Res. Record, 2260 (2011), 50-59. doi: 10.3141/2260-06.

[15]

G. F. Newell, A simplified theory of kinematic waves in highway traffic, part II: Queueing at freeway bottlenecks, Transport. Res. B-Meth., 27 (1993), 289-303. doi: 10.1016/0191-2615(93)90039-D.

[16]

B. Piccoli and A. Tosin, Vehicular traffic: A review of continuum mathematical models, in Encyclopedia of Complexity and Systems Science, (ed., R. A. Meyers), 22, Springer, New York, 2009, 9727-9749. doi: 10.1007/978-0-387-30440-3_576.

show all references

References:
[1]

A. Bellouquid, E. De Angelis and L. Fermo, Towards the modeling of vehicular traffic as a complex system: A kinetic theory approach, Math. Models Methods Appl. Sci., 22 (2012), 1140003, 35 pp. doi: 10.1142/S0218202511400033.

[2]

S. Blandin, G. Bretti, C. Cutolo and B. Piccoli, Numerical simulations of traffic data via fluid dynamic approach, Appl. Math. Comput., 210 (2009), 441-454. doi: 10.1016/j.amc.2009.01.057.

[3]

S. Blandin, D. Work, P. Goatin, B. Piccoli and A. Bayen, A general phase transition model for vehicular traffic, SIAM J. Appl. Math., 71 (2011), 107-127. doi: 10.1137/090754467.

[4]

I. Bonzani and L. Mussone, From experiments to hydrodynamic traffic flow models. I. Modelling and parameter identification, Math. Comput. Modelling, 37 (2003), 1435-1442. doi: 10.1016/S0895-7177(03)90051-3.

[5]

R. M. Colombo, Hyperbolic phase transitions in traffic flow, SIAM J. Appl. Math., 63 (2002), 708-721. doi: 10.1137/S0036139901393184.

[6]

V. Coscia, M. Delitala and P. Frasca, On the mathematical theory of vehicular traffic flow. II. Discrete velocity kinetic models, Internat. J. Non-Linear Mech., 42 (2007), 411-421. doi: 10.1016/j.ijnonlinmec.2006.02.008.

[7]

C. F. Daganzo, A variational formulation of kinematic waves: Solution methods, Transport. Res. B-Meth., 39 (2005), 934-950. doi: 10.1016/j.trb.2004.05.003.

[8]

P. Degond and M. Delitala, Modelling and simulation of vehicular traffic jam formation, Kinet. Relat. Models, 1 (2008), 279-293. doi: 10.3934/krm.2008.1.279.

[9]

M. Delitala and A. Tosin, Mathematical modeling of vehicular traffic: A discrete kinetic theory approach, Math. Models Methods Appl. Sci., 17 (2007), 901-932. doi: 10.1142/S0218202507002157.

[10]

L. Fermo and A. Tosin, A fully-discrete-state kinetic theory approach to modeling vehicular traffic, SIAM J. Appl. Math., 73 (2013), 1533-1556. doi: 10.1137/120897110.

[11]

M. Garavello and B. Piccoli, Traffic Flow on Networks - Conservation Laws Models, AIMS Series on Applied Mathematics, 1, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006.

[12]

M. Günther, A. Klar, T. Materne and R. Wegener, Multivalued fundamental diagrams and stop and go waves for continuum traffic flow equations, SIAM J. Appl. Math., 64 (2003), 468-483. doi: 10.1137/S0036139902404700.

[13]

B. S. Kerner, The Physics of Traffic, Springer, Berlin, 2004. doi: 10.1007/978-3-540-40986-1.

[14]

J. Li and M. Zhang, Fundamental diagram of traffic flow, Transp. Res. Record, 2260 (2011), 50-59. doi: 10.3141/2260-06.

[15]

G. F. Newell, A simplified theory of kinematic waves in highway traffic, part II: Queueing at freeway bottlenecks, Transport. Res. B-Meth., 27 (1993), 289-303. doi: 10.1016/0191-2615(93)90039-D.

[16]

B. Piccoli and A. Tosin, Vehicular traffic: A review of continuum mathematical models, in Encyclopedia of Complexity and Systems Science, (ed., R. A. Meyers), 22, Springer, New York, 2009, 9727-9749. doi: 10.1007/978-0-387-30440-3_576.

[1]

Benjamin Seibold, Morris R. Flynn, Aslan R. Kasimov, Rodolfo R. Rosales. Constructing set-valued fundamental diagrams from Jamiton solutions in second order traffic models. Networks and Heterogeneous Media, 2013, 8 (3) : 745-772. doi: 10.3934/nhm.2013.8.745

[2]

Gabriella Puppo, Matteo Semplice, Andrea Tosin, Giuseppe Visconti. Kinetic models for traffic flow resulting in a reduced space of microscopic velocities. Kinetic and Related Models, 2017, 10 (3) : 823-854. doi: 10.3934/krm.2017033

[3]

Michael Herty, Lorenzo Pareschi, Mohammed Seaïd. Enskog-like discrete velocity models for vehicular traffic flow. Networks and Heterogeneous Media, 2007, 2 (3) : 481-496. doi: 10.3934/nhm.2007.2.481

[4]

Michael Herty, Gabriella Puppo, Sebastiano Roncoroni, Giuseppe Visconti. The BGK approximation of kinetic models for traffic. Kinetic and Related Models, 2020, 13 (2) : 279-307. doi: 10.3934/krm.2020010

[5]

Alexandre Bayen, Rinaldo M. Colombo, Paola Goatin, Benedetto Piccoli. Traffic modeling and management: Trends and perspectives. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : i-ii. doi: 10.3934/dcdss.2014.7.3i

[6]

Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks and Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255

[7]

Johanna Ridder, Wen Shen. Traveling waves for nonlocal models of traffic flow. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4001-4040. doi: 10.3934/dcds.2019161

[8]

Tong Li. Qualitative analysis of some PDE models of traffic flow. Networks and Heterogeneous Media, 2013, 8 (3) : 773-781. doi: 10.3934/nhm.2013.8.773

[9]

Paola Goatin. Traffic flow models with phase transitions on road networks. Networks and Heterogeneous Media, 2009, 4 (2) : 287-301. doi: 10.3934/nhm.2009.4.287

[10]

Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic and Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165

[11]

Andrea Tosin, Mattia Zanella. Uncertainty damping in kinetic traffic models by driver-assist controls. Mathematical Control and Related Fields, 2021, 11 (3) : 681-713. doi: 10.3934/mcrf.2021018

[12]

Alina Chertock, Changhui Tan, Bokai Yan. An asymptotic preserving scheme for kinetic models with singular limit. Kinetic and Related Models, 2018, 11 (4) : 735-756. doi: 10.3934/krm.2018030

[13]

Adriano Festa, Diogo Gomes, Francisco J. Silva, Daniela Tonon. Preface: Mean field games: New trends and applications. Journal of Dynamics and Games, 2021, 8 (4) : i-ii. doi: 10.3934/jdg.2021025

[14]

Nicolas Forcadel, Wilfredo Salazar, Mamdouh Zaydan. Homogenization of second order discrete model with local perturbation and application to traffic flow. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1437-1487. doi: 10.3934/dcds.2017060

[15]

Michael Burger, Simone Göttlich, Thomas Jung. Derivation of second order traffic flow models with time delays. Networks and Heterogeneous Media, 2019, 14 (2) : 265-288. doi: 10.3934/nhm.2019011

[16]

Michael Herty, Reinhard Illner. Analytical and numerical investigations of refined macroscopic traffic flow models. Kinetic and Related Models, 2010, 3 (2) : 311-333. doi: 10.3934/krm.2010.3.311

[17]

Felisia Angela Chiarello, Paola Goatin. Non-local multi-class traffic flow models. Networks and Heterogeneous Media, 2019, 14 (2) : 371-387. doi: 10.3934/nhm.2019015

[18]

Paola Goatin, Elena Rossi. Comparative study of macroscopic traffic flow models at road junctions. Networks and Heterogeneous Media, 2020, 15 (2) : 261-279. doi: 10.3934/nhm.2020012

[19]

Simone Göttlich, Oliver Kolb, Sebastian Kühn. Optimization for a special class of traffic flow models: Combinatorial and continuous approaches. Networks and Heterogeneous Media, 2014, 9 (2) : 315-334. doi: 10.3934/nhm.2014.9.315

[20]

Sharif E. Guseynov, Shirmail G. Bagirov. Distributed mathematical models of undetermined "without preference" motion of traffic flow. Conference Publications, 2011, 2011 (Special) : 589-600. doi: 10.3934/proc.2011.2011.589

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (130)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]