June  2014, 7(3): 483-501. doi: 10.3934/dcdss.2014.7.483

Traffic light control: A case study

1. 

Department of Mathematics, University of Mannheim, D-68131 Mannheim

2. 

School of Business Informatics and Mathematics, University of Mannheim, D-68131 Mannheim, Germany

Received  May 2013 Revised  August 2013 Published  January 2014

This article is devoted to traffic flow networks including traffic lights at intersections. Mathematically, we consider a nonlinear dynamical traffic model where traffic lights are modeled as piecewise constant functions for red and green signals. The involved control problem is to find stop and go configurations depending on the current traffic volume. We propose a numerical solution strategy and present computational results.
Citation: Simone Göttlich, Ute Ziegler. Traffic light control: A case study. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 483-501. doi: 10.3934/dcdss.2014.7.483
References:
[1]

G. Bretti, R. Natalini and B. Piccoli, Numerical approximations of a traffic flow model on networks,, Networks and Heterogeneous Media, 1 (2006), 57.  doi: 10.3934/nhm.2006.1.57.  Google Scholar

[2]

E. Brockfeld, R. Barlovic, A. Schadschneider and M. Schreckenberg, Optimizing traffic lights in a cellular automaton model for city traffic,, Physical Review E, 64 (2001).  doi: 10.1103/PhysRevE.64.056132.  Google Scholar

[3]

Y. Chitour and B. Piccoli, Traffic circles and timing of traffic lights for cars flow,, Discrete and Continuous Dynamical Systems Series B, 5 (2005), 599.  doi: 10.3934/dcdsb.2005.5.599.  Google Scholar

[4]

C. Claudel and A. Bayen, Convex formulations of data assimilation problems for a class of hamilton-jacobi equations,, SIAM Journal on Control and Optimization, 49 (2011), 383.  doi: 10.1137/090778754.  Google Scholar

[5]

G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network,, SIAM Journal on Mathematical Analysis, 36 (2005), 1862.  doi: 10.1137/S0036141004402683.  Google Scholar

[6]

C. Daganzo, On the variational theory of traffic flow: well-posedness, duality and applications,, Networks and Heterogeneous Media, 1 (2006), 601.  doi: 10.3934/nhm.2006.1.601.  Google Scholar

[7]

C. D'Apice, S. Göttlich, M. Herty and B. Piccoli, Modeling, Simulation and Optimization of Supply Chains: A Continuous Approach,, SIAM, (2010).  doi: 10.1137/1.9780898717600.  Google Scholar

[8]

C. D'Apice, R. Manzo and B. Piccoli, Packet flow on telecommunication networks,, SIAM Journal on Mathematical Analysis, 38 (2006), 717.  doi: 10.1137/050631628.  Google Scholar

[9]

G. Flötteröd and J. Rohde, Operational macroscopic modeling of complex urban intersections,, Transportation Research Part B: Methodological, 45 (2011), 903.   Google Scholar

[10]

A. Fügenschuh, S. Göttlich, M. Herty, A. Klar and A. Martin, A discrete optimization approach to large scale supply networks based on partial differential equations,, SIAM Journal on Scientific Computing, 30 (2008), 1490.  doi: 10.1137/060663799.  Google Scholar

[11]

A. Fügenschuh, M. Herty, A. Klar and A. Martin, Combinatorial and continuous models for the optimization of traffic flows on networks,, SIAM Journal on Optimization, 16 (2006), 1155.  doi: 10.1137/040605503.  Google Scholar

[12]

S. Göttlich, M. Herty and U. Ziegler, Numerical discretization of Hamilton-Jacobi equations on networks,, Networks and Heterogenous Media, 8 (2013), 685.   Google Scholar

[13]

S. Göttlich, M. Herty and U. Ziegler, Modeling and optimizing traffic light settings on road networks,, preprint, (2013).   Google Scholar

[14]

S. Göttlich, S. Kühn and O. Kolb, Optimization for a special class of traffic flow models: combinatorial and continuous approaches,, preprint, (2013).   Google Scholar

[15]

M. Gugat, M. Herty, A. Klar and G. Leugering, Optimal control for traffic flow networks,, Journal of Optimization Theory and Applications, 126 (2005), 589.  doi: 10.1007/s10957-005-5499-z.  Google Scholar

[16]

M. Herty and A. Klar, Modeling, simulation, and optimization of traffic flow networks,, SIAM Journal on Scientific Computing, 25 (2003), 1066.  doi: 10.1137/S106482750241459X.  Google Scholar

[17]

H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads,, SIAM Journal on Mathematical Analysis, 26 (1995), 999.  doi: 10.1137/S0036141093243289.  Google Scholar

[18]

, IBM ILOG CPLEX Optimization Studio,, , ().   Google Scholar

[19]

S. Lämmer and D. Helbing, Self-control of traffic lights and vehicle flows in urban road networks,, Journal of Statistical Mechanics: Theory and Experiment, (2008).   Google Scholar

[20]

J. Lebacque and M. Khoshyaran, First order macroscopic traffic flow models for networks in the context of dynamic assignment,, Transportation Planning, (2004), 119.  doi: 10.1007/0-306-48220-7_8.  Google Scholar

[21]

W. Lin and C. Wang, An enhanced 0-1 mixed-integer LP formulation for traffic signal control,, IEEE Transactions on Intelligent Transportation Systems, 5 (2004), 238.  doi: 10.1109/TITS.2004.838217.  Google Scholar

[22]

P. Mazaré, A. Dehwah, C. Claudel and A. Bayen, Analytical and grid-free solutions to the lighthill-whitham-richards traffic flow model,, Transportation Research Part B: Methodological, 45 (2011), 1727.   Google Scholar

[23]

L. Zhao, X. Peng, L. Li and Z. Li, A fast signal timing algorithm for individual oversaturated intersections,, IEEE Transactions on Intelligent Transportation Systems, (2011), 1.  doi: 10.1109/TITS.2010.2076808.  Google Scholar

[24]

U. Ziegler, Mathematical Modelling, Simulation and Optimisation of Dynamic Transportation Networks with Applications in Production and Traffic,, Ph.D Thesis RWTH Aachen University, (2013).   Google Scholar

show all references

References:
[1]

G. Bretti, R. Natalini and B. Piccoli, Numerical approximations of a traffic flow model on networks,, Networks and Heterogeneous Media, 1 (2006), 57.  doi: 10.3934/nhm.2006.1.57.  Google Scholar

[2]

E. Brockfeld, R. Barlovic, A. Schadschneider and M. Schreckenberg, Optimizing traffic lights in a cellular automaton model for city traffic,, Physical Review E, 64 (2001).  doi: 10.1103/PhysRevE.64.056132.  Google Scholar

[3]

Y. Chitour and B. Piccoli, Traffic circles and timing of traffic lights for cars flow,, Discrete and Continuous Dynamical Systems Series B, 5 (2005), 599.  doi: 10.3934/dcdsb.2005.5.599.  Google Scholar

[4]

C. Claudel and A. Bayen, Convex formulations of data assimilation problems for a class of hamilton-jacobi equations,, SIAM Journal on Control and Optimization, 49 (2011), 383.  doi: 10.1137/090778754.  Google Scholar

[5]

G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network,, SIAM Journal on Mathematical Analysis, 36 (2005), 1862.  doi: 10.1137/S0036141004402683.  Google Scholar

[6]

C. Daganzo, On the variational theory of traffic flow: well-posedness, duality and applications,, Networks and Heterogeneous Media, 1 (2006), 601.  doi: 10.3934/nhm.2006.1.601.  Google Scholar

[7]

C. D'Apice, S. Göttlich, M. Herty and B. Piccoli, Modeling, Simulation and Optimization of Supply Chains: A Continuous Approach,, SIAM, (2010).  doi: 10.1137/1.9780898717600.  Google Scholar

[8]

C. D'Apice, R. Manzo and B. Piccoli, Packet flow on telecommunication networks,, SIAM Journal on Mathematical Analysis, 38 (2006), 717.  doi: 10.1137/050631628.  Google Scholar

[9]

G. Flötteröd and J. Rohde, Operational macroscopic modeling of complex urban intersections,, Transportation Research Part B: Methodological, 45 (2011), 903.   Google Scholar

[10]

A. Fügenschuh, S. Göttlich, M. Herty, A. Klar and A. Martin, A discrete optimization approach to large scale supply networks based on partial differential equations,, SIAM Journal on Scientific Computing, 30 (2008), 1490.  doi: 10.1137/060663799.  Google Scholar

[11]

A. Fügenschuh, M. Herty, A. Klar and A. Martin, Combinatorial and continuous models for the optimization of traffic flows on networks,, SIAM Journal on Optimization, 16 (2006), 1155.  doi: 10.1137/040605503.  Google Scholar

[12]

S. Göttlich, M. Herty and U. Ziegler, Numerical discretization of Hamilton-Jacobi equations on networks,, Networks and Heterogenous Media, 8 (2013), 685.   Google Scholar

[13]

S. Göttlich, M. Herty and U. Ziegler, Modeling and optimizing traffic light settings on road networks,, preprint, (2013).   Google Scholar

[14]

S. Göttlich, S. Kühn and O. Kolb, Optimization for a special class of traffic flow models: combinatorial and continuous approaches,, preprint, (2013).   Google Scholar

[15]

M. Gugat, M. Herty, A. Klar and G. Leugering, Optimal control for traffic flow networks,, Journal of Optimization Theory and Applications, 126 (2005), 589.  doi: 10.1007/s10957-005-5499-z.  Google Scholar

[16]

M. Herty and A. Klar, Modeling, simulation, and optimization of traffic flow networks,, SIAM Journal on Scientific Computing, 25 (2003), 1066.  doi: 10.1137/S106482750241459X.  Google Scholar

[17]

H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads,, SIAM Journal on Mathematical Analysis, 26 (1995), 999.  doi: 10.1137/S0036141093243289.  Google Scholar

[18]

, IBM ILOG CPLEX Optimization Studio,, , ().   Google Scholar

[19]

S. Lämmer and D. Helbing, Self-control of traffic lights and vehicle flows in urban road networks,, Journal of Statistical Mechanics: Theory and Experiment, (2008).   Google Scholar

[20]

J. Lebacque and M. Khoshyaran, First order macroscopic traffic flow models for networks in the context of dynamic assignment,, Transportation Planning, (2004), 119.  doi: 10.1007/0-306-48220-7_8.  Google Scholar

[21]

W. Lin and C. Wang, An enhanced 0-1 mixed-integer LP formulation for traffic signal control,, IEEE Transactions on Intelligent Transportation Systems, 5 (2004), 238.  doi: 10.1109/TITS.2004.838217.  Google Scholar

[22]

P. Mazaré, A. Dehwah, C. Claudel and A. Bayen, Analytical and grid-free solutions to the lighthill-whitham-richards traffic flow model,, Transportation Research Part B: Methodological, 45 (2011), 1727.   Google Scholar

[23]

L. Zhao, X. Peng, L. Li and Z. Li, A fast signal timing algorithm for individual oversaturated intersections,, IEEE Transactions on Intelligent Transportation Systems, (2011), 1.  doi: 10.1109/TITS.2010.2076808.  Google Scholar

[24]

U. Ziegler, Mathematical Modelling, Simulation and Optimisation of Dynamic Transportation Networks with Applications in Production and Traffic,, Ph.D Thesis RWTH Aachen University, (2013).   Google Scholar

[1]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[2]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[3]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[4]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[5]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[6]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[7]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[8]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[9]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[10]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[11]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[12]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[13]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[14]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[15]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[16]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[17]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[18]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[19]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[20]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (97)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]