February  2014, 7(1): 53-62. doi: 10.3934/dcdss.2014.7.53

Crystalline motion of spiral-shaped polygonal curves with a tip motion

1. 

Shibaura Institute of Technology, Fukasaku 309, Minuma-ku, Saitama, 337-8570

Received  March 2012 Revised  August 2012 Published  July 2013

In this paper we propose a crystalline motion of spiral-shaped polygonal curves with a tip motion as a simple model of a step motion on a crystal surface under screw dislocation. We give a tip motion and discuss the behavior of the solution curves by crystalline curvature flow with a driving force. We show that the solution curve belongs to a suitable class of spiral-shaped curves and also show a time-global existence of the spiral-shaped solutions.
Citation: Tetsuya Ishiwata. Crystalline motion of spiral-shaped polygonal curves with a tip motion. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 53-62. doi: 10.3934/dcdss.2014.7.53
References:
[1]

S. Angenent and M. E. Gurtin, Multiphase thermomechanics with interfacial structure, 2. Evolution of an isothermal interface,, Arch. Rational Mech. Anal., 108 (1989), 323.  doi: 10.1007/BF01041068.  Google Scholar

[2]

W. K. Burton, N. Cabrera and F. C. Frank, The growth of crystals and the equilibrium structure of their surfaces,, Philos. Trans. Roy. Soc. London. Ser. A., 243 (1951), 299.  doi: 10.1098/rsta.1951.0006.  Google Scholar

[3]

B. Fiedler, J.-S. Guo and J.-C. Tsai, Multiplicity of rotating spirals under curvature flows with normal tip motion,, J. Differential Equations, 205 (2004), 211.  doi: 10.1016/j.jde.2004.02.012.  Google Scholar

[4]

M.-H. Giga and Y. Giga, Crystalline and level set flow-convergence of a crystalline algorithm for a general anisotropic curvature flow in the plane,, in, 13 (2000), 64.   Google Scholar

[5]

Y. Giga and M. E. Gurtin, A comparison theorem for crystalline evolution in the plane,, Quart. J. Appl. Math., LIV (1996), 727.   Google Scholar

[6]

J.-S. Guo, K.-I. Nakamura, T. Ogiwara and J.-C. Tsai, On the Steadily Rotating Spirals,, Japan J. Indust. Appl. Math., 23 (2006), 1.  doi: 10.1007/BF03167495.  Google Scholar

[7]

M. E. Gurtin, "Thermomechanics of Evolving Phase Boundaries in the Plane,", Oxford Mathematical Monographs, (1993).   Google Scholar

[8]

H. Imai, N. Ishimura and T. K. Ushijima, A crystalline motion of spiral-shaped curves with symmetry,, J. Math. Anal. Appl., 240 (1999), 115.  doi: 10.1006/jmaa.1999.6599.  Google Scholar

[9]

H. Imai, N. Ishimura and T. K. Ushijima, Motion of spirals by crystalline curvature,, M2AN Math. Model. Numer. Anal., 33 (1999), 797.  doi: 10.1051/m2an:1999164.  Google Scholar

[10]

T. Ishiwata, Motion of non-convex polygons by crystalline curvature and almost convexity phenomena,, Japan Journal of Industrial and Applied Mathematics, 25 (2008), 233.  doi: 10.1007/BF03167521.  Google Scholar

[11]

T. Ishiwata, On the motion of polygonal curves with asymptotic lines by crystalline curvature flow with bulk effect,, Discrete Contin. Dyn. Syst., 4 (2011), 865.  doi: 10.3934/dcdss.2011.4.865.  Google Scholar

[12]

T. Ishiwata, Motion of polygonal curved fronts by crystalline motion: V-shaped solutions and eventual monotonicity,, Discrete Contin. Dyn. Syst. Supplement, (2011), 717.   Google Scholar

[13]

Y. Marutani, H. Ninomiya and R. Weidenfeld, Traveling curved fronts of anisotropic curvature flows,, Japan Journal of Industrial and Applied Mathematics, 23 (2006), 83.  doi: 10.1007/BF03167500.  Google Scholar

[14]

J. E. Taylor, Constructions and conjectures in crystalline nondifferential geometry,, in, 52 (1991), 321.   Google Scholar

[15]

T. K. Ushijima and S. Yazaki, Convergence of a crystalline algorithm for the motion of a closed convex curve by a power of curvature $V=K^{\alpha}$,, SIAM J. Numer. Anal., 37 (2000), 500.  doi: 10.1137/S0036142997330135.  Google Scholar

[16]

S. Yazaki, Point-extinction and geometric expansion of solutions to a crystalline motion,, Hokkaido Math. J., 30 (2001), 327.   Google Scholar

show all references

References:
[1]

S. Angenent and M. E. Gurtin, Multiphase thermomechanics with interfacial structure, 2. Evolution of an isothermal interface,, Arch. Rational Mech. Anal., 108 (1989), 323.  doi: 10.1007/BF01041068.  Google Scholar

[2]

W. K. Burton, N. Cabrera and F. C. Frank, The growth of crystals and the equilibrium structure of their surfaces,, Philos. Trans. Roy. Soc. London. Ser. A., 243 (1951), 299.  doi: 10.1098/rsta.1951.0006.  Google Scholar

[3]

B. Fiedler, J.-S. Guo and J.-C. Tsai, Multiplicity of rotating spirals under curvature flows with normal tip motion,, J. Differential Equations, 205 (2004), 211.  doi: 10.1016/j.jde.2004.02.012.  Google Scholar

[4]

M.-H. Giga and Y. Giga, Crystalline and level set flow-convergence of a crystalline algorithm for a general anisotropic curvature flow in the plane,, in, 13 (2000), 64.   Google Scholar

[5]

Y. Giga and M. E. Gurtin, A comparison theorem for crystalline evolution in the plane,, Quart. J. Appl. Math., LIV (1996), 727.   Google Scholar

[6]

J.-S. Guo, K.-I. Nakamura, T. Ogiwara and J.-C. Tsai, On the Steadily Rotating Spirals,, Japan J. Indust. Appl. Math., 23 (2006), 1.  doi: 10.1007/BF03167495.  Google Scholar

[7]

M. E. Gurtin, "Thermomechanics of Evolving Phase Boundaries in the Plane,", Oxford Mathematical Monographs, (1993).   Google Scholar

[8]

H. Imai, N. Ishimura and T. K. Ushijima, A crystalline motion of spiral-shaped curves with symmetry,, J. Math. Anal. Appl., 240 (1999), 115.  doi: 10.1006/jmaa.1999.6599.  Google Scholar

[9]

H. Imai, N. Ishimura and T. K. Ushijima, Motion of spirals by crystalline curvature,, M2AN Math. Model. Numer. Anal., 33 (1999), 797.  doi: 10.1051/m2an:1999164.  Google Scholar

[10]

T. Ishiwata, Motion of non-convex polygons by crystalline curvature and almost convexity phenomena,, Japan Journal of Industrial and Applied Mathematics, 25 (2008), 233.  doi: 10.1007/BF03167521.  Google Scholar

[11]

T. Ishiwata, On the motion of polygonal curves with asymptotic lines by crystalline curvature flow with bulk effect,, Discrete Contin. Dyn. Syst., 4 (2011), 865.  doi: 10.3934/dcdss.2011.4.865.  Google Scholar

[12]

T. Ishiwata, Motion of polygonal curved fronts by crystalline motion: V-shaped solutions and eventual monotonicity,, Discrete Contin. Dyn. Syst. Supplement, (2011), 717.   Google Scholar

[13]

Y. Marutani, H. Ninomiya and R. Weidenfeld, Traveling curved fronts of anisotropic curvature flows,, Japan Journal of Industrial and Applied Mathematics, 23 (2006), 83.  doi: 10.1007/BF03167500.  Google Scholar

[14]

J. E. Taylor, Constructions and conjectures in crystalline nondifferential geometry,, in, 52 (1991), 321.   Google Scholar

[15]

T. K. Ushijima and S. Yazaki, Convergence of a crystalline algorithm for the motion of a closed convex curve by a power of curvature $V=K^{\alpha}$,, SIAM J. Numer. Anal., 37 (2000), 500.  doi: 10.1137/S0036142997330135.  Google Scholar

[16]

S. Yazaki, Point-extinction and geometric expansion of solutions to a crystalline motion,, Hokkaido Math. J., 30 (2001), 327.   Google Scholar

[1]

Tetsuya Ishiwata. On the motion of polygonal curves with asymptotic lines by crystalline curvature flow with bulk effect. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 865-873. doi: 10.3934/dcdss.2011.4.865

[2]

Tetsuya Ishiwata. Motion of polygonal curved fronts by crystalline motion: v-shaped solutions and eventual monotonicity. Conference Publications, 2011, 2011 (Special) : 717-726. doi: 10.3934/proc.2011.2011.717

[3]

Tetsuya Ishiwata, Takeshi Ohtsuka. Evolution of a spiral-shaped polygonal curve by the crystalline curvature flow with a pinned tip. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5261-5295. doi: 10.3934/dcdsb.2019058

[4]

Tetsuya Ishiwata. On spiral solutions to generalized crystalline motion with a rotating tip motion. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 881-888. doi: 10.3934/dcdss.2015.8.881

[5]

Dongfen Bian, Boling Guo. Global existence and large time behavior of solutions to the electric-magnetohydrodynamic equations. Kinetic & Related Models, 2013, 6 (3) : 481-503. doi: 10.3934/krm.2013.6.481

[6]

Kosuke Ono. Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 651-662. doi: 10.3934/dcds.2003.9.651

[7]

Šárka Nečasová, Joerg Wolf. On the existence of global strong solutions to the equations modeling a motion of a rigid body around a viscous fluid. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1539-1562. doi: 10.3934/dcds.2016.36.1539

[8]

Tetsutaro Shibata. Global behavior of bifurcation curves for the nonlinear eigenvalue problems with periodic nonlinear terms. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2139-2147. doi: 10.3934/cpaa.2018102

[9]

Honglv Ma, Jin Zhang, Chengkui Zhong. Global existence and asymptotic behavior of global smooth solutions to the Kirchhoff equations with strong nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4721-4737. doi: 10.3934/dcdsb.2019027

[10]

Daehwan Kim, Juncheol Pyo. Existence and asymptotic behavior of helicoidal translating solitons of the mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5897-5919. doi: 10.3934/dcds.2018256

[11]

Young-Pil Choi, Seung-Yeal Ha, Seok-Bae Yun. Global existence and asymptotic behavior of measure valued solutions to the kinetic Kuramoto--Daido model with inertia. Networks & Heterogeneous Media, 2013, 8 (4) : 943-968. doi: 10.3934/nhm.2013.8.943

[12]

Tong Li, Kun Zhao. Global existence and long-time behavior of entropy weak solutions to a quasilinear hyperbolic blood flow model. Networks & Heterogeneous Media, 2011, 6 (4) : 625-646. doi: 10.3934/nhm.2011.6.625

[13]

Yongqin Liu, Shuichi Kawashima. Global existence and asymptotic behavior of solutions for quasi-linear dissipative plate equation. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1113-1139. doi: 10.3934/dcds.2011.29.1113

[14]

Yuming Qin, Jianlin Zhang. Global existence and asymptotic behavior of spherically symmetric solutions for the multi-dimensional infrarelativistic model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2529-2574. doi: 10.3934/cpaa.2019115

[15]

Shao-Yuan Huang. Exact multiplicity and bifurcation curves of positive solutions of a one-dimensional Minkowski-curvature problem and its application. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1271-1294. doi: 10.3934/cpaa.2018061

[16]

Mi-Ho Giga, Yoshikazu Giga. A subdifferential interpretation of crystalline motion under nonuniform driving force. Conference Publications, 1998, 1998 (Special) : 276-287. doi: 10.3934/proc.1998.1998.276

[17]

Kin Ming Hui. Existence of self-similar solutions of the inverse mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 863-880. doi: 10.3934/dcds.2019036

[18]

Koichi Osaki, Hirotoshi Satoh, Shigetoshi Yazaki. Towards modelling spiral motion of open plane curves. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 1009-1022. doi: 10.3934/dcdss.2015.8.1009

[19]

Jiří Minarčík, Masato Kimura, Michal Beneš. Comparing motion of curves and hypersurfaces in $ \mathbb{R}^m $. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4815-4826. doi: 10.3934/dcdsb.2019032

[20]

Matteo Novaga, Enrico Valdinoci. Closed curves of prescribed curvature and a pinning effect. Networks & Heterogeneous Media, 2011, 6 (1) : 77-88. doi: 10.3934/nhm.2011.6.77

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]