\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Free-congested and micro-macro descriptions of traffic flow

Abstract Related Papers Cited by
  • We present two frameworks for the description of traffic, both consisting in the coupling of systems of different types. First, we consider the Free--Congested model [7,11], where a scalar conservation law is coupled with a $2\times2$ system. Then, we present the coupling of a micro- and a macroscopic models, the former consisting in a system of ordinary differential equations and the latter in the usual LWR conservation law, see [10]. A comparison between the two different frameworks is also provided.
    Mathematics Subject Classification: 35L65, 90B20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Aw, A. Klar, T. Materne and M. Rascle, Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM J. Appl. Math., 63 (2002), 259-278 (electronic).doi: 10.1137/S0036139900380955.

    [2]

    A. Aw and M. Rascle, Resurrection of "second order'' models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938 (electronic).doi: 10.1137/S0036139997332099.

    [3]

    P. Bagnerini, R. M. Colombo and A. Corli, On the role of source terms in continuum traffic flow models, Math. Comput. Modelling, 44 (2006), 917-930.doi: 10.1016/j.mcm.2006.02.019.

    [4]

    P. Bagnerini and M. Rascle, A multiclass homogenized hyperbolic model of traffic flow, SIAM J. Math. Anal., 35 (2003), 949-973 (electronic).doi: 10.1137/S0036141002411490.

    [5]

    S. Benzoni Gavage and R. M. Colombo, An $n$-populations model for traffic flow, Europ. J. Appl. Math., 14 (2003), 587-612.doi: 10.1017/S0956792503005266.

    [6]

    S. Benzoni-Gavage, R. M. Colombo and P. Gwiazda, Measure valued solutions to conservation laws motivated by traffic modelling, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 1791-1803.doi: 10.1098/rspa.2005.1649.

    [7]

    S. Blandin, D. Work, P. Goatin, B. Piccoli and A. Bayen, A general phase transition model for vehicular traffic, SIAM J. Appl. Math., 71 (2011), 107-127.doi: 10.1137/090754467.

    [8]

    R. M. Colombo, Hyperbolic phase transitions in traffic flow, SIAM J. Appl. Math., 63 (2002), 708-721.doi: 10.1137/S0036139901393184.

    [9]

    R. M. Colombo, P. Goatin and F. S. Priuli, Global well posedness of traffic flow models with phase transitions, Nonlinear Anal., 66 (2007), 2413-2426.doi: 10.1016/j.na.2006.03.029.

    [10]

    R. M. Colombo and F. Marcellini, A mixed ode-pde model for vehicular traffic, {preprint}, (2013).

    [11]

    R. M. Colombo, F. Marcellini and M. Rascle, A 2-phase traffic model based on a speed bound, SIAM J. Appl. Math., 70 (2010), 2652-2666.doi: 10.1137/090752468.

    [12]

    R. M. Colombo and A. Marson, A Hölder continuous ODE related to traffic flow, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 759-772.doi: 10.1017/S0308210500002663.

    [13]

    L. C. Edie, Car-following and steady-state theory for noncongested traffic, Operations Res., 9 (1961), 66-76.doi: 10.1287/opre.9.1.66.

    [14]

    P. Goatin, The Aw-Rascle vehicular traffic flow model with phase transitions, Math. Comput. Modelling, 44 (2006), 287-303.doi: 10.1016/j.mcm.2006.01.016.

    [15]

    M. Godvik and H. Hanche-Olsen, Existence of solutions for the Aw-Rascle traffic flow model with vacuum, J. Hyperbolic Differ. Equ., 5 (2008), 45-63.doi: 10.1142/S0219891608001428.

    [16]

    D. Helbing and M. Treiber, Critical discussion of synchronized flow, Cooper@tive Tr@nsport@tion Dyn@mics, 1 (2002).

    [17]

    B. S. Kerner, Phase transitions in traffic flow, in Traffic and Granular Flow '99, (eds., D. Helbing, H. Hermann, M. Schreckenberg and D. Wolf), Springer Verlag, 2000, 253-283.doi: 10.1007/978-3-642-59751-0_25.

    [18]

    B. L. Keyfitz and H. C. Kranzer, A system of nonstrictly hyperbolic conservation laws arising in elasticity theory, Arch. Rational Mech. Anal., 72 (1979/80), 219-241. doi: 10.1007/BF00281590.

    [19]

    K. M. Kockelman, Modeling traffics flow-density relation: Accommodation of multiple flow regimes and traveler types, Transportation, 28 (2001), 363-374.

    [20]

    C. Lattanzio and B. Piccoli, Coupling of microscopic and macroscopic traffic models at boundaries, Math. Models Methods Appl. Sci., 20 (2010), 2349-2370.doi: 10.1142/S0218202510004945.

    [21]

    J. P. Lebacque, S. Mammar and H. Haj-Salem, Generic second order traffic flow modelling, in Transportation and Traffic Theory: Proceedings of the 17th International Symposium on Transportation and Traffic Theory, 2007.

    [22]

    R. J. LeVeque, Numerical Methods for Conservation Laws, Second edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1992.doi: 10.1007/978-3-0348-8629-1.

    [23]

    M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345.doi: 10.1098/rspa.1955.0089.

    [24]

    P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51.doi: 10.1287/opre.4.1.42.

    [25]

    B. Temple, Systems of conservation laws with invariant submanifolds, Trans. Amer. Math. Soc., 280 (1983), 781-795.doi: 10.1090/S0002-9947-1983-0716850-2.

    [26]

    H. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research Part B: Methodological, 36 (2002), 275-290.doi: 10.1016/S0191-2615(00)00050-3.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(68) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return