June  2014, 7(3): 557-578. doi: 10.3934/dcdss.2014.7.557

Computing travel times from filtered traffic states

1. 

Telenav, Inc, 950 De Guigne Dr, Sunnyvale, CA 94085, United States

2. 

Microsoft, 1065 La Avenida St, Mountain View, CA 94043

3. 

University of Illinois at Urbana-Champaign, 1203 Newmark Civil Engineering Laboratory, 205 N. Mathews Ave, Urbana, IL 61801

Received  July 2013 Revised  August 2013 Published  January 2014

This article experimentally assesses the influence of sensor data rates on travel time estimates computed from filtered traffic speed estimates. Using velocity data obtained from GPS smartphones and inductive loop detector data collected during the Mobile Century experiment near Berkeley, CA, and an evolution equation for average velocity along the roadway, an estimate of the traffic state is obtained via ensemble Kalman filtering. A large--scale batch of computations is run to produce estimates of traffic velocity with varying degrees of input data, and instantaneous and a posteriori dynamic travel times are compared to travel times recorded using license plate re-identification. We illustrate that dynamic travel time estimates can be computed with less than 10% error regardless of the data source, and that existing inductive loop detector data can significantly improve the accuracy of travel time estimates when GPS data is sparse.
Citation: Pierre-Emmanuel Mazaré, Olli-Pekka Tossavainen, Daniel B. Work. Computing travel times from filtered traffic states. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 557-578. doi: 10.3934/dcdss.2014.7.557
References:
[1]

A. Alessandri, R. Bolla and M. Repetto, Estimation of freeway traffic variables using information from mobile phones, in Proc. of the American Control Conference, 2003, 4089-4094.

[2]

V. Astarita and M. Florianz, The use of mobile phones in traffic management and control, in Proc. of the IEEE Intelligent Transportation Systems Conference, 2001, 10-15. doi: 10.1109/ITSC.2001.948621.

[3]

H. Bar-Gera, Evaluation of a cellular phone-based system for measurements of traffic speeds and travel times: A case study from Israel, Transportation Research Part C: Emerging Technologies, 15 (2007), 380-391. doi: 10.1016/j.trc.2007.06.003.

[4]

S. Blandin, G. Bretti, A. Cutolo and B. Piccoli, Numerical simulations of traffic data via fluid dynamic approach, Applied Mathematics and Computation, 210 (2009), 441-454. doi: 10.1016/j.amc.2009.01.057.

[5]

G. Bretti and B. Piccoli, A tracking algorithm for car paths on road networks, SIAM Journal on Applied Dynamical Systems, 7 (2008), 510-531. doi: 10.1137/070697768.

[6]

Caltrans, Performance Measurement System (PeMS)http://pems.dot.ca.gov/.

[7]

H. Chen and H. A. Rakha, Prediction of dynamic freeway travel times based on vehicle trajectory construction, in Proc. of the IEEE Intelligent Transportation Systems Conference, 2012, 576-581. doi: 10.1109/ITSC.2012.6338825.

[8]

P. Cheng, Z. Qiu and B. Ran, Particle filter based traffic state estimation using cell phone network data, in Proc. of the IEEE Intelligent Transportation Systems Conference, 2006, 1047-1052.

[9]

R. Colombo, Hyperbolic phase transitions in traffic flow, SIAM Journal on Applied Mathematics, 63 (2002), 708-721. doi: 10.1137/S0036139901393184.

[10]

E. Cristiani, C. de Fabritiis and B. Piccoli, A fluid dynamic approach for traffic forecast from mobile sensor data, Communications in Applied and Industrial Mathematics, 1 (2010), 54-71.

[11]

C. F. Daganzo, The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory, Transportation Research Part B: Methodological, 28 (1994), 269-287. doi: 10.1016/0191-2615(94)90002-7.

[12]

C. F. Daganzo, The cell transmission model, part II: network traffic, Transportation Research Part B: Methodological, 29 (1995), 79-93. doi: 10.1016/0191-2615(94)00022-R.

[13]

G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, Journal of Geophysical Research, 99 (1994), 10143-10162. doi: 10.1029/94JC00572.

[14]

G. Evensen, The ensemble Kalman filter: Theoretical formulation and practical implementation, Ocean Dynamics, 53 (2003), 343-367. doi: 10.1007/s10236-003-0036-9.

[15]

M. Garavello and B. Piccoli, Traffic Flow on Networks, American Institute of Mathematical Sciences, Springfield, MO, 2006.

[16]

J.-C. Herrera and A. Bayen, Incorporation of Lagrangian measurements in freeway traffic state estimation, Transportation Research Part B: Methodological, 44 (2010), 460-481. doi: 10.1016/j.trb.2009.10.005.

[17]

J.-C. Herrera, D. Work, R. Herring, J. Ban, Q. Jacobson and A. Bayen, Evaluation of traffic data obtained via GPS-enabled mobile phones: the Mobile Century experiment, Transportation Research Part C: Emerging Technologies, 18 (2010), 568-583. doi: 10.1016/j.trc.2009.10.006.

[18]

B. Hoh, M. Gruteser, R. Herring, J. Ban, D. Work, J.-C. Herrera, A. Bayen, M. Annavaram and Q. Jacobson., Virtual trip lines for distributed privacy-preserving traffic monitoring, in 6th International Conference on Mobile Systems, Applications, and Services, 2008, 15-28. doi: 10.1145/1378600.1378604.

[19]

R. E. Kalman, A new approach to linear filtering and prediction problems, Transactions of the ASME Journal of Basic Engineering, 82 (1960), 35-45. doi: 10.1115/1.3662552.

[20]

J. Kwon, K. Petty and P. Varaiya, Probe vehicle runs or loop detectors? Transportation Research Record, 2012 (2007), 57-63. doi: 10.3141/2012-07.

[21]

M. Lighthill and G. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A, 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089.

[22]

H. Liu, A. Danczyk, R. Brewer and R. Starr, Evaluation of cell phone traffic data in minnesota, Transportation Research Record, 2086 (2008), 1-7. doi: 10.3141/2086-01.

[23]

P.-E. Mazaré, O.-P. Tossavainen, A. Bayen and D. Work, Trade-offs between inductive loops and GPS probe vehicles for travel time estimation: A Mobile Century case study, in Proc. of the Transportation Research Board 91st Annual Meeting, 2012.

[24]

P. I. Richards, Shock waves on the highway, Operations Research, 4 (1956), 42-51. doi: 10.1287/opre.4.1.42.

[25]

B. Smith, H. Zhang, M. Fontaine and M. Green, Cell Phone Probes as an ATMS Tool, Technical Report UVACTS-15-5-79, University of Virginia Center for Transportation Studies, 2003.

[26]

S. Smulders, Control of freeway traffic flow by variable speed signs, Transportation Research Part B: Methodological, 24 (1990), 111-132. doi: 10.1016/0191-2615(90)90023-R.

[27]

D. Work, S. Blandin, O.-P. Tossavainen, B. Piccoli and A. Bayen, A traffic model for velocity data assimilation, Applied Mathematics Research Express, 2010 (2010), 1-35.

[28]

J. L. Ygnace, C. Drane, Y. B. Yim and R. de Lacvivier, Travel Time Estimation on the San Francisco Bay Area Network Using Cellular Phones as Probes, Technical Report UCB-ITS-PWP-2000-18, University of California Berkeley Institute of Transportation Studies, 2000.

[29]

Y. Yim and R. Cayford, Investigation of Vehicles as Probes Using Global Positioning System and Cellular Phone Tracking: Field Operational Test, Technical Report UCB-ITS-PWP-2001-9, University of California Berkeley Institute of Transportation Studies, 2001.

[30]

, Mobile Millennium, http://traffic.berkeley.edu/.

show all references

References:
[1]

A. Alessandri, R. Bolla and M. Repetto, Estimation of freeway traffic variables using information from mobile phones, in Proc. of the American Control Conference, 2003, 4089-4094.

[2]

V. Astarita and M. Florianz, The use of mobile phones in traffic management and control, in Proc. of the IEEE Intelligent Transportation Systems Conference, 2001, 10-15. doi: 10.1109/ITSC.2001.948621.

[3]

H. Bar-Gera, Evaluation of a cellular phone-based system for measurements of traffic speeds and travel times: A case study from Israel, Transportation Research Part C: Emerging Technologies, 15 (2007), 380-391. doi: 10.1016/j.trc.2007.06.003.

[4]

S. Blandin, G. Bretti, A. Cutolo and B. Piccoli, Numerical simulations of traffic data via fluid dynamic approach, Applied Mathematics and Computation, 210 (2009), 441-454. doi: 10.1016/j.amc.2009.01.057.

[5]

G. Bretti and B. Piccoli, A tracking algorithm for car paths on road networks, SIAM Journal on Applied Dynamical Systems, 7 (2008), 510-531. doi: 10.1137/070697768.

[6]

Caltrans, Performance Measurement System (PeMS)http://pems.dot.ca.gov/.

[7]

H. Chen and H. A. Rakha, Prediction of dynamic freeway travel times based on vehicle trajectory construction, in Proc. of the IEEE Intelligent Transportation Systems Conference, 2012, 576-581. doi: 10.1109/ITSC.2012.6338825.

[8]

P. Cheng, Z. Qiu and B. Ran, Particle filter based traffic state estimation using cell phone network data, in Proc. of the IEEE Intelligent Transportation Systems Conference, 2006, 1047-1052.

[9]

R. Colombo, Hyperbolic phase transitions in traffic flow, SIAM Journal on Applied Mathematics, 63 (2002), 708-721. doi: 10.1137/S0036139901393184.

[10]

E. Cristiani, C. de Fabritiis and B. Piccoli, A fluid dynamic approach for traffic forecast from mobile sensor data, Communications in Applied and Industrial Mathematics, 1 (2010), 54-71.

[11]

C. F. Daganzo, The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory, Transportation Research Part B: Methodological, 28 (1994), 269-287. doi: 10.1016/0191-2615(94)90002-7.

[12]

C. F. Daganzo, The cell transmission model, part II: network traffic, Transportation Research Part B: Methodological, 29 (1995), 79-93. doi: 10.1016/0191-2615(94)00022-R.

[13]

G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, Journal of Geophysical Research, 99 (1994), 10143-10162. doi: 10.1029/94JC00572.

[14]

G. Evensen, The ensemble Kalman filter: Theoretical formulation and practical implementation, Ocean Dynamics, 53 (2003), 343-367. doi: 10.1007/s10236-003-0036-9.

[15]

M. Garavello and B. Piccoli, Traffic Flow on Networks, American Institute of Mathematical Sciences, Springfield, MO, 2006.

[16]

J.-C. Herrera and A. Bayen, Incorporation of Lagrangian measurements in freeway traffic state estimation, Transportation Research Part B: Methodological, 44 (2010), 460-481. doi: 10.1016/j.trb.2009.10.005.

[17]

J.-C. Herrera, D. Work, R. Herring, J. Ban, Q. Jacobson and A. Bayen, Evaluation of traffic data obtained via GPS-enabled mobile phones: the Mobile Century experiment, Transportation Research Part C: Emerging Technologies, 18 (2010), 568-583. doi: 10.1016/j.trc.2009.10.006.

[18]

B. Hoh, M. Gruteser, R. Herring, J. Ban, D. Work, J.-C. Herrera, A. Bayen, M. Annavaram and Q. Jacobson., Virtual trip lines for distributed privacy-preserving traffic monitoring, in 6th International Conference on Mobile Systems, Applications, and Services, 2008, 15-28. doi: 10.1145/1378600.1378604.

[19]

R. E. Kalman, A new approach to linear filtering and prediction problems, Transactions of the ASME Journal of Basic Engineering, 82 (1960), 35-45. doi: 10.1115/1.3662552.

[20]

J. Kwon, K. Petty and P. Varaiya, Probe vehicle runs or loop detectors? Transportation Research Record, 2012 (2007), 57-63. doi: 10.3141/2012-07.

[21]

M. Lighthill and G. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A, 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089.

[22]

H. Liu, A. Danczyk, R. Brewer and R. Starr, Evaluation of cell phone traffic data in minnesota, Transportation Research Record, 2086 (2008), 1-7. doi: 10.3141/2086-01.

[23]

P.-E. Mazaré, O.-P. Tossavainen, A. Bayen and D. Work, Trade-offs between inductive loops and GPS probe vehicles for travel time estimation: A Mobile Century case study, in Proc. of the Transportation Research Board 91st Annual Meeting, 2012.

[24]

P. I. Richards, Shock waves on the highway, Operations Research, 4 (1956), 42-51. doi: 10.1287/opre.4.1.42.

[25]

B. Smith, H. Zhang, M. Fontaine and M. Green, Cell Phone Probes as an ATMS Tool, Technical Report UVACTS-15-5-79, University of Virginia Center for Transportation Studies, 2003.

[26]

S. Smulders, Control of freeway traffic flow by variable speed signs, Transportation Research Part B: Methodological, 24 (1990), 111-132. doi: 10.1016/0191-2615(90)90023-R.

[27]

D. Work, S. Blandin, O.-P. Tossavainen, B. Piccoli and A. Bayen, A traffic model for velocity data assimilation, Applied Mathematics Research Express, 2010 (2010), 1-35.

[28]

J. L. Ygnace, C. Drane, Y. B. Yim and R. de Lacvivier, Travel Time Estimation on the San Francisco Bay Area Network Using Cellular Phones as Probes, Technical Report UCB-ITS-PWP-2000-18, University of California Berkeley Institute of Transportation Studies, 2000.

[29]

Y. Yim and R. Cayford, Investigation of Vehicles as Probes Using Global Positioning System and Cellular Phone Tracking: Field Operational Test, Technical Report UCB-ITS-PWP-2001-9, University of California Berkeley Institute of Transportation Studies, 2001.

[30]

, Mobile Millennium, http://traffic.berkeley.edu/.

[1]

Wen Shen. Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks and Heterogeneous Media, 2019, 14 (4) : 709-732. doi: 10.3934/nhm.2019028

[2]

Michael Herty, J.-P. Lebacque, S. Moutari. A novel model for intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2009, 4 (4) : 813-826. doi: 10.3934/nhm.2009.4.813

[3]

Michael Herty, S. Moutari, M. Rascle. Optimization criteria for modelling intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2006, 1 (2) : 275-294. doi: 10.3934/nhm.2006.1.275

[4]

Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks and Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255

[5]

Michael Herty, Lorenzo Pareschi, Mohammed Seaïd. Enskog-like discrete velocity models for vehicular traffic flow. Networks and Heterogeneous Media, 2007, 2 (3) : 481-496. doi: 10.3934/nhm.2007.2.481

[6]

Alexandre M. Bayen, Hélène Frankowska, Jean-Patrick Lebacque, Benedetto Piccoli, H. Michael Zhang. Special issue on Mathematics of Traffic Flow Modeling, Estimation and Control. Networks and Heterogeneous Media, 2013, 8 (3) : i-ii. doi: 10.3934/nhm.2013.8.3i

[7]

Yacine Chitour, Benedetto Piccoli. Traffic circles and timing of traffic lights for cars flow. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 599-630. doi: 10.3934/dcdsb.2005.5.599

[8]

Pierre Degond, Marcello Delitala. Modelling and simulation of vehicular traffic jam formation. Kinetic and Related Models, 2008, 1 (2) : 279-293. doi: 10.3934/krm.2008.1.279

[9]

Nicola Bellomo, Abdelghani Bellouquid, Juanjo Nieto, Juan Soler. On the multiscale modeling of vehicular traffic: From kinetic to hydrodynamics. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 1869-1888. doi: 10.3934/dcdsb.2014.19.1869

[10]

Michael Herty, Adrian Fazekas, Giuseppe Visconti. A two-dimensional data-driven model for traffic flow on highways. Networks and Heterogeneous Media, 2018, 13 (2) : 217-240. doi: 10.3934/nhm.2018010

[11]

Guillaume Costeseque, Jean-Patrick Lebacque. Discussion about traffic junction modelling: Conservation laws VS Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 411-433. doi: 10.3934/dcdss.2014.7.411

[12]

Mary Luz Mouronte, Rosa María Benito. Structural analysis and traffic flow in the transport networks of Madrid. Networks and Heterogeneous Media, 2015, 10 (1) : 127-148. doi: 10.3934/nhm.2015.10.127

[13]

Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Numerical approximations of a traffic flow model on networks. Networks and Heterogeneous Media, 2006, 1 (1) : 57-84. doi: 10.3934/nhm.2006.1.57

[14]

Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Fast algorithms for the approximation of a traffic flow model on networks. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 427-448. doi: 10.3934/dcdsb.2006.6.427

[15]

Johanna Ridder, Wen Shen. Traveling waves for nonlocal models of traffic flow. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4001-4040. doi: 10.3934/dcds.2019161

[16]

Tong Li. Qualitative analysis of some PDE models of traffic flow. Networks and Heterogeneous Media, 2013, 8 (3) : 773-781. doi: 10.3934/nhm.2013.8.773

[17]

Paola Goatin. Traffic flow models with phase transitions on road networks. Networks and Heterogeneous Media, 2009, 4 (2) : 287-301. doi: 10.3934/nhm.2009.4.287

[18]

Rinaldo M. Colombo, Andrea Corli. Dynamic parameters identification in traffic flow modeling. Conference Publications, 2005, 2005 (Special) : 190-199. doi: 10.3934/proc.2005.2005.190

[19]

Alberto Bressan, Ke Han. Existence of optima and equilibria for traffic flow on networks. Networks and Heterogeneous Media, 2013, 8 (3) : 627-648. doi: 10.3934/nhm.2013.8.627

[20]

Alberto Bressan, Fang Yu. Continuous Riemann solvers for traffic flow at a junction. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4149-4171. doi: 10.3934/dcds.2015.35.4149

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (118)
  • HTML views (0)
  • Cited by (3)

[Back to Top]