June  2014, 7(3): 579-591. doi: 10.3934/dcdss.2014.7.579

A justification of a LWR model based on a follow the leader description

1. 

Department of Mathematics and Applications, University of Milano-Bicocca, Via Cozzi, 53, 20125 Milano, Italy

Received  May 2013 Revised  July 2013 Published  January 2014

We investigate the correlations between a macroscopic Lighthill--Whitham and Richards model and a microscopic follow-the-leader model for traffic flow. We prove that the microscopic model tends to the macroscopic one in a sort of kinetic limit, i.e. as the number of individuals tends to infinity, keeping the total mass fixed. Based on this convergence result, we approximately compute the solutions to a conservation law by means of the integration of an ordinary differential system. From the numerical point of view, the limiting procedure is then extended to the case of several populations, referring to the macroscopic model in [2] and to the natural multi--population analogue of the microscopic one.
Citation: Elena Rossi. A justification of a LWR model based on a follow the leader description. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 579-591. doi: 10.3934/dcdss.2014.7.579
References:
[1]

B. Argall, E. Cheleshkin, J. M. Greenberg, C. Hinde and P.-J. Lin, A rigorous treatment of a follow-the-leader traffic model with traffic lights present,, SIAM J. Appl. Math., 63 (2002), 149. doi: 10.1137/S0036139901391215.

[2]

S. Benzoni-Gavage and R. M. Colombo, An $n$-populations model for traffic flow,, European J. Appl. Math., 14 (2003), 587. doi: 10.1017/S0956792503005266.

[3]

A. Bressan, Hyperbolic Systems of Conservation Laws,, Oxford Lecture Series in Mathematics and its Applications, (2000).

[4]

R. M. Colombo and A. Marson, A Hölder continuous ODE related to traffic flow,, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 759. doi: 10.1017/S0308210500002663.

[5]

R. M. Colombo, F. Marcellini and M. Rascle, A 2-phase traffic model based on a speed bound,, SIAM J. Appl. Math., 70 (2010), 2652. doi: 10.1137/090752468.

[6]

R. M. Colombo and E. Rossi, On the micro-macro limit in traffic flow,, to appear in Rend. Semin. Mat. Univ. Padova., ().

[7]

G. Costeseque, Analyse et Modelisation du Trafic Routier: Passage du Microscopique au Macroscopique,, Master's Thesis, (2011).

[8]

S. N. Kružkov, First order quasilinear equations with several independent variables,, Mat. Sb. (N.S.), 81 (1970), 228.

[9]

R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems,, Cambridge Texts in Applied Mathematics, (2002). doi: 10.1017/CBO9780511791253.

[10]

M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads,, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317. doi: 10.1098/rspa.1955.0089.

[11]

K. Radhakrishnan and A. C. Hindmarsh, Description and Use of LSODE, the Livermore Solver for Ordinary Differential Equations,, LLNL report UCRL-ID-113855, (1993). doi: 10.2172/15013302.

[12]

P. I. Richards, Shock waves on the highway,, Operations Res., 4 (1956), 42. doi: 10.1287/opre.4.1.42.

[13]

E. Rossi, On the Micro-Macro Limit in Traffic Flow,, Master's thesis, (2012).

show all references

References:
[1]

B. Argall, E. Cheleshkin, J. M. Greenberg, C. Hinde and P.-J. Lin, A rigorous treatment of a follow-the-leader traffic model with traffic lights present,, SIAM J. Appl. Math., 63 (2002), 149. doi: 10.1137/S0036139901391215.

[2]

S. Benzoni-Gavage and R. M. Colombo, An $n$-populations model for traffic flow,, European J. Appl. Math., 14 (2003), 587. doi: 10.1017/S0956792503005266.

[3]

A. Bressan, Hyperbolic Systems of Conservation Laws,, Oxford Lecture Series in Mathematics and its Applications, (2000).

[4]

R. M. Colombo and A. Marson, A Hölder continuous ODE related to traffic flow,, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 759. doi: 10.1017/S0308210500002663.

[5]

R. M. Colombo, F. Marcellini and M. Rascle, A 2-phase traffic model based on a speed bound,, SIAM J. Appl. Math., 70 (2010), 2652. doi: 10.1137/090752468.

[6]

R. M. Colombo and E. Rossi, On the micro-macro limit in traffic flow,, to appear in Rend. Semin. Mat. Univ. Padova., ().

[7]

G. Costeseque, Analyse et Modelisation du Trafic Routier: Passage du Microscopique au Macroscopique,, Master's Thesis, (2011).

[8]

S. N. Kružkov, First order quasilinear equations with several independent variables,, Mat. Sb. (N.S.), 81 (1970), 228.

[9]

R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems,, Cambridge Texts in Applied Mathematics, (2002). doi: 10.1017/CBO9780511791253.

[10]

M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads,, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317. doi: 10.1098/rspa.1955.0089.

[11]

K. Radhakrishnan and A. C. Hindmarsh, Description and Use of LSODE, the Livermore Solver for Ordinary Differential Equations,, LLNL report UCRL-ID-113855, (1993). doi: 10.2172/15013302.

[12]

P. I. Richards, Shock waves on the highway,, Operations Res., 4 (1956), 42. doi: 10.1287/opre.4.1.42.

[13]

E. Rossi, On the Micro-Macro Limit in Traffic Flow,, Master's thesis, (2012).

[1]

Helge Holden, Nils Henrik Risebro. Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow. Networks & Heterogeneous Media, 2018, 13 (3) : 409-421. doi: 10.3934/nhm.2018018

[2]

Gabriella Puppo, Matteo Semplice, Andrea Tosin, Giuseppe Visconti. Kinetic models for traffic flow resulting in a reduced space of microscopic velocities. Kinetic & Related Models, 2017, 10 (3) : 823-854. doi: 10.3934/krm.2017033

[3]

Wen Shen, Karim Shikh-Khalil. Traveling waves for a microscopic model of traffic flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2571-2589. doi: 10.3934/dcds.2018108

[4]

Tadahisa Funaki, Hirofumi Izuhara, Masayasu Mimura, Chiyori Urabe. A link between microscopic and macroscopic models of self-organized aggregation. Networks & Heterogeneous Media, 2012, 7 (4) : 705-740. doi: 10.3934/nhm.2012.7.705

[5]

Helge Holden, Nils Henrik Risebro. The continuum limit of Follow-the-Leader models — a short proof. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 715-722. doi: 10.3934/dcds.2018031

[6]

Wen Shen. Traveling wave profiles for a Follow-the-Leader model for traffic flow with rough road condition. Networks & Heterogeneous Media, 2018, 13 (3) : 449-478. doi: 10.3934/nhm.2018020

[7]

Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks & Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255

[8]

Michael Herty, Reinhard Illner. Analytical and numerical investigations of refined macroscopic traffic flow models. Kinetic & Related Models, 2010, 3 (2) : 311-333. doi: 10.3934/krm.2010.3.311

[9]

Mauro Garavello, Benedetto Piccoli. Coupling of microscopic and phase transition models at boundary. Networks & Heterogeneous Media, 2013, 8 (3) : 649-661. doi: 10.3934/nhm.2013.8.649

[10]

Simone Göttlich, Stephan Knapp, Peter Schillen. A pedestrian flow model with stochastic velocities: Microscopic and macroscopic approaches. Kinetic & Related Models, 2018, 11 (6) : 1333-1358. doi: 10.3934/krm.2018052

[11]

Bertrand Haut, Georges Bastin. A second order model of road junctions in fluid models of traffic networks. Networks & Heterogeneous Media, 2007, 2 (2) : 227-253. doi: 10.3934/nhm.2007.2.227

[12]

Marte Godvik, Harald Hanche-Olsen. Car-following and the macroscopic Aw-Rascle traffic flow model. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 279-303. doi: 10.3934/dcdsb.2010.13.279

[13]

Mohamed Benyahia, Massimiliano D. Rosini. A macroscopic traffic model with phase transitions and local point constraints on the flow. Networks & Heterogeneous Media, 2017, 12 (2) : 297-317. doi: 10.3934/nhm.2017013

[14]

Emiliano Cristiani, Smita Sahu. On the micro-to-macro limit for first-order traffic flow models on networks. Networks & Heterogeneous Media, 2016, 11 (3) : 395-413. doi: 10.3934/nhm.2016002

[15]

Alexander Bobylev, Mirela Vinerean, Åsa Windfäll. Discrete velocity models of the Boltzmann equation and conservation laws. Kinetic & Related Models, 2010, 3 (1) : 35-58. doi: 10.3934/krm.2010.3.35

[16]

Tong Li. Qualitative analysis of some PDE models of traffic flow. Networks & Heterogeneous Media, 2013, 8 (3) : 773-781. doi: 10.3934/nhm.2013.8.773

[17]

Paola Goatin. Traffic flow models with phase transitions on road networks. Networks & Heterogeneous Media, 2009, 4 (2) : 287-301. doi: 10.3934/nhm.2009.4.287

[18]

Mauro Garavello, Benedetto Piccoli. On fluido-dynamic models for urban traffic. Networks & Heterogeneous Media, 2009, 4 (1) : 107-126. doi: 10.3934/nhm.2009.4.107

[19]

Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic & Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165

[20]

Johanna Ridder, Wen Shen. Traveling waves for nonlocal models of traffic flow. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4001-4040. doi: 10.3934/dcds.2019161

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]