June  2014, 7(3): 579-591. doi: 10.3934/dcdss.2014.7.579

A justification of a LWR model based on a follow the leader description

1. 

Department of Mathematics and Applications, University of Milano-Bicocca, Via Cozzi, 53, 20125 Milano, Italy

Received  May 2013 Revised  July 2013 Published  January 2014

We investigate the correlations between a macroscopic Lighthill--Whitham and Richards model and a microscopic follow-the-leader model for traffic flow. We prove that the microscopic model tends to the macroscopic one in a sort of kinetic limit, i.e. as the number of individuals tends to infinity, keeping the total mass fixed. Based on this convergence result, we approximately compute the solutions to a conservation law by means of the integration of an ordinary differential system. From the numerical point of view, the limiting procedure is then extended to the case of several populations, referring to the macroscopic model in [2] and to the natural multi--population analogue of the microscopic one.
Citation: Elena Rossi. A justification of a LWR model based on a follow the leader description. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 579-591. doi: 10.3934/dcdss.2014.7.579
References:
[1]

B. Argall, E. Cheleshkin, J. M. Greenberg, C. Hinde and P.-J. Lin, A rigorous treatment of a follow-the-leader traffic model with traffic lights present, SIAM J. Appl. Math., 63 (2002), 149-168. doi: 10.1137/S0036139901391215.

[2]

S. Benzoni-Gavage and R. M. Colombo, An $n$-populations model for traffic flow, European J. Appl. Math., 14 (2003), 587-612. doi: 10.1017/S0956792503005266.

[3]

A. Bressan, Hyperbolic Systems of Conservation Laws, Oxford Lecture Series in Mathematics and its Applications, 20, Oxford University Press, Oxford, 2000.

[4]

R. M. Colombo and A. Marson, A Hölder continuous ODE related to traffic flow, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 759-772. doi: 10.1017/S0308210500002663.

[5]

R. M. Colombo, F. Marcellini and M. Rascle, A 2-phase traffic model based on a speed bound, SIAM J. Appl. Math., 70 (2010), 2652-2666. doi: 10.1137/090752468.

[6]

R. M. Colombo and E. Rossi, On the micro-macro limit in traffic flow, to appear in Rend. Semin. Mat. Univ. Padova.

[7]

G. Costeseque, Analyse et Modelisation du Trafic Routier: Passage du Microscopique au Macroscopique, Master's Thesis, Ecole des Ponts ParisTech, 2011.

[8]

S. N. Kružkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228-255.

[9]

R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002. doi: 10.1017/CBO9780511791253.

[10]

M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089.

[11]

K. Radhakrishnan and A. C. Hindmarsh, Description and Use of LSODE, the Livermore Solver for Ordinary Differential Equations, LLNL report UCRL-ID-113855, National Aeronautics and Space Administration, Lewis Research Center, 1993. doi: 10.2172/15013302.

[12]

P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51. doi: 10.1287/opre.4.1.42.

[13]

E. Rossi, On the Micro-Macro Limit in Traffic Flow, Master's thesis, Università Cattolica del Sacro Cuore, Brescia, 2012.

show all references

References:
[1]

B. Argall, E. Cheleshkin, J. M. Greenberg, C. Hinde and P.-J. Lin, A rigorous treatment of a follow-the-leader traffic model with traffic lights present, SIAM J. Appl. Math., 63 (2002), 149-168. doi: 10.1137/S0036139901391215.

[2]

S. Benzoni-Gavage and R. M. Colombo, An $n$-populations model for traffic flow, European J. Appl. Math., 14 (2003), 587-612. doi: 10.1017/S0956792503005266.

[3]

A. Bressan, Hyperbolic Systems of Conservation Laws, Oxford Lecture Series in Mathematics and its Applications, 20, Oxford University Press, Oxford, 2000.

[4]

R. M. Colombo and A. Marson, A Hölder continuous ODE related to traffic flow, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 759-772. doi: 10.1017/S0308210500002663.

[5]

R. M. Colombo, F. Marcellini and M. Rascle, A 2-phase traffic model based on a speed bound, SIAM J. Appl. Math., 70 (2010), 2652-2666. doi: 10.1137/090752468.

[6]

R. M. Colombo and E. Rossi, On the micro-macro limit in traffic flow, to appear in Rend. Semin. Mat. Univ. Padova.

[7]

G. Costeseque, Analyse et Modelisation du Trafic Routier: Passage du Microscopique au Macroscopique, Master's Thesis, Ecole des Ponts ParisTech, 2011.

[8]

S. N. Kružkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228-255.

[9]

R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002. doi: 10.1017/CBO9780511791253.

[10]

M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345. doi: 10.1098/rspa.1955.0089.

[11]

K. Radhakrishnan and A. C. Hindmarsh, Description and Use of LSODE, the Livermore Solver for Ordinary Differential Equations, LLNL report UCRL-ID-113855, National Aeronautics and Space Administration, Lewis Research Center, 1993. doi: 10.2172/15013302.

[12]

P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51. doi: 10.1287/opre.4.1.42.

[13]

E. Rossi, On the Micro-Macro Limit in Traffic Flow, Master's thesis, Università Cattolica del Sacro Cuore, Brescia, 2012.

[1]

Helge Holden, Nils Henrik Risebro. Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow. Networks and Heterogeneous Media, 2018, 13 (3) : 409-421. doi: 10.3934/nhm.2018018

[2]

Gabriella Puppo, Matteo Semplice, Andrea Tosin, Giuseppe Visconti. Kinetic models for traffic flow resulting in a reduced space of microscopic velocities. Kinetic and Related Models, 2017, 10 (3) : 823-854. doi: 10.3934/krm.2017033

[3]

Matteo Piu, Gabriella Puppo. Stability analysis of microscopic models for traffic flow with lane changing. Networks and Heterogeneous Media, 2022  doi: 10.3934/nhm.2022006

[4]

Wen Shen, Karim Shikh-Khalil. Traveling waves for a microscopic model of traffic flow. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2571-2589. doi: 10.3934/dcds.2018108

[5]

Helge Holden, Nils Henrik Risebro. The continuum limit of Follow-the-Leader models — a short proof. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 715-722. doi: 10.3934/dcds.2018031

[6]

Tadahisa Funaki, Hirofumi Izuhara, Masayasu Mimura, Chiyori Urabe. A link between microscopic and macroscopic models of self-organized aggregation. Networks and Heterogeneous Media, 2012, 7 (4) : 705-740. doi: 10.3934/nhm.2012.7.705

[7]

Wen Shen. Traveling wave profiles for a Follow-the-Leader model for traffic flow with rough road condition. Networks and Heterogeneous Media, 2018, 13 (3) : 449-478. doi: 10.3934/nhm.2018020

[8]

Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks and Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255

[9]

Michael Herty, Reinhard Illner. Analytical and numerical investigations of refined macroscopic traffic flow models. Kinetic and Related Models, 2010, 3 (2) : 311-333. doi: 10.3934/krm.2010.3.311

[10]

Paola Goatin, Elena Rossi. Comparative study of macroscopic traffic flow models at road junctions. Networks and Heterogeneous Media, 2020, 15 (2) : 261-279. doi: 10.3934/nhm.2020012

[11]

Mauro Garavello, Benedetto Piccoli. Coupling of microscopic and phase transition models at boundary. Networks and Heterogeneous Media, 2013, 8 (3) : 649-661. doi: 10.3934/nhm.2013.8.649

[12]

Simone Göttlich, Stephan Knapp, Peter Schillen. A pedestrian flow model with stochastic velocities: Microscopic and macroscopic approaches. Kinetic and Related Models, 2018, 11 (6) : 1333-1358. doi: 10.3934/krm.2018052

[13]

Marco Di Francesco, Graziano Stivaletta. Convergence of the follow-the-leader scheme for scalar conservation laws with space dependent flux. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 233-266. doi: 10.3934/dcds.2020010

[14]

Michael Herty, Gabriella Puppo, Sebastiano Roncoroni, Giuseppe Visconti. The BGK approximation of kinetic models for traffic. Kinetic and Related Models, 2020, 13 (2) : 279-307. doi: 10.3934/krm.2020010

[15]

Bertrand Haut, Georges Bastin. A second order model of road junctions in fluid models of traffic networks. Networks and Heterogeneous Media, 2007, 2 (2) : 227-253. doi: 10.3934/nhm.2007.2.227

[16]

Wen Shen. Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Networks and Heterogeneous Media, 2019, 14 (4) : 709-732. doi: 10.3934/nhm.2019028

[17]

Alexander Bobylev, Mirela Vinerean, Åsa Windfäll. Discrete velocity models of the Boltzmann equation and conservation laws. Kinetic and Related Models, 2010, 3 (1) : 35-58. doi: 10.3934/krm.2010.3.35

[18]

Marte Godvik, Harald Hanche-Olsen. Car-following and the macroscopic Aw-Rascle traffic flow model. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 279-303. doi: 10.3934/dcdsb.2010.13.279

[19]

Mohamed Benyahia, Massimiliano D. Rosini. A macroscopic traffic model with phase transitions and local point constraints on the flow. Networks and Heterogeneous Media, 2017, 12 (2) : 297-317. doi: 10.3934/nhm.2017013

[20]

Emiliano Cristiani, Smita Sahu. On the micro-to-macro limit for first-order traffic flow models on networks. Networks and Heterogeneous Media, 2016, 11 (3) : 395-413. doi: 10.3934/nhm.2016002

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (186)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]