August  2014, 7(4): 631-652. doi: 10.3934/dcdss.2014.7.631

An excess-decay result for a class of degenerate elliptic equations

1. 

Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa

2. 

University of Texas at Austin, Department of Mathematics, 2515 Speedway Stop C1200, Austin, TX 78712-1202

Received  October 2013 Revised  December 2013 Published  February 2014

We consider a family of degenerate elliptic equations of the form div $(\nabla F(\nabla u)) = f$, where $F\in C^{1,1}$ is a convex function which is elliptic outside a ball. We prove an excess-decay estimate at points where $\nabla u$ is close to a nondegenerate value for $F$. This result applies to degenerate equations arising in traffic congestion, where we obtain continuity of $\nabla u$ outside the degeneracy, and to anisotropic versions of the $p$-laplacian, where we get Hölder regularity of $\nabla u$.
Citation: Maria Colombo, Alessio Figalli. An excess-decay result for a class of degenerate elliptic equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 631-652. doi: 10.3934/dcdss.2014.7.631
References:
[1]

E. Acerbi and N. Fusco, A regularity theorem for minimizers of quasiconvex integrals,, Arch. Rational Mech. Anal., 99 (1987), 261.  doi: 10.1007/BF00284509.  Google Scholar

[2]

E. Acerbi and N. Fusco, Local regularity for minimizers of nonconvex integrals,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 16 (1989), 603.   Google Scholar

[3]

G. Anzellotti and M. Giaquinta, Convex functionals and partial regularity,, Arch. Rational Mech. Anal., 102 (1988), 243.  doi: 10.1007/BF00281349.  Google Scholar

[4]

L. Brasco, Global $L^\infty$ gradient estimates for solutions to a certain degenerate elliptic equation,, Nonlinear Anal., 74 (2011), 516.  doi: 10.1016/j.na.2010.09.006.  Google Scholar

[5]

L. Brasco, G. Carlier and F. Santambrogio, Congested traffic dynamics, weak flows and very degenerate elliptic equations,, J. Math. Pures Appl., 93 (2010), 652.  doi: 10.1016/j.matpur.2010.03.010.  Google Scholar

[6]

M. Colombo and A. Figalli, Regularity results for very degenerate elliptic equations,, J. Math. Pures Appl., 101 (2014), 94.  doi: 10.1016/j.matpur.2013.05.005.  Google Scholar

[7]

D. De Silva and O. Savin, Minimizers of convex functionals arising in random surfaces,, Duke Math. J., 151 (2010), 487.  doi: 10.1215/00127094-2010-004.  Google Scholar

[8]

E. DiBenedetto, $C^{1+\alpha }$ local regularity of weak solutions of degenerate elliptic equations,, Nonlinear Anal., 7 (1983), 827.  doi: 10.1016/0362-546X(83)90061-5.  Google Scholar

[9]

L. Esposito, G. Mingione and C. Trombetti, On the Lipschitz regularity for certain elliptic problems,, Forum Math., 18 (2006), 263.  doi: 10.1515/FORUM.2006.016.  Google Scholar

[10]

L. C. Evans, A new proof of local $C^{1,\alpha }$ regularity for solutions of certain degenerate elliptic p.d.e.,, J. Differential Equations, 45 (1982), 356.  doi: 10.1016/0022-0396(82)90033-X.  Google Scholar

[11]

I. Fonseca, N. Fusco and P. Marcellini, An existence result for a nonconvex variational problem via regularity,, ESAIM Control Optim. Calc. Var., 7 (2002), 69.  doi: 10.1051/cocv:2002004.  Google Scholar

[12]

M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems,, Princeton Univ. Press, (1983).   Google Scholar

[13]

M. Giaquinta and G. Modica, Partial regularity of minimizers of quasiconvex integrals,, Ann. Inst. H. Poincaré, 3 (1986), 185.   Google Scholar

[14]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, reprint of the 1998 edition, (1998).   Google Scholar

[15]

C. Imbert and L. Silvestre, Estimates on elliptic equations that hold only where the gradient is large,, preprint, (2013).   Google Scholar

[16]

J. L. Lewis, Regularity of the derivatives of solutions to certain degenerate elliptic equations,, Indiana Univ. Math. J., 32 (1983), 849.  doi: 10.1512/iumj.1983.32.32058.  Google Scholar

[17]

F. Santambrogio and V. Vespri, Continuity in two dimensions for a very degenerate elliptic equation,, Nonlinear Anal., 73 (2010), 3832.  doi: 10.1016/j.na.2010.08.008.  Google Scholar

[18]

O. Savin, Small perturbation solutions for elliptic equations,, Comm. Partial Differential Equations, 32 (2007), 557.  doi: 10.1080/03605300500394405.  Google Scholar

[19]

P. Tolksdorff, Regularity for a more general class of quasi-linear elliptic equations,, J. Differential Equations, 51 (1984), 126.  doi: 10.1016/0022-0396(84)90105-0.  Google Scholar

[20]

K. Uhlenbeck, Regularity for a class of non-linear elliptic systems,, Acta Math., 138 (1977), 219.  doi: 10.1007/BF02392316.  Google Scholar

[21]

N. N. Uraltseva, Degenerate quasilinear elliptic systems,, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 7 (1968), 184.   Google Scholar

[22]

L. Wang, Compactness methods for certain degenerate elliptic equations,, J. Differential Equations, 107 (1994), 341.  doi: 10.1006/jdeq.1994.1016.  Google Scholar

show all references

References:
[1]

E. Acerbi and N. Fusco, A regularity theorem for minimizers of quasiconvex integrals,, Arch. Rational Mech. Anal., 99 (1987), 261.  doi: 10.1007/BF00284509.  Google Scholar

[2]

E. Acerbi and N. Fusco, Local regularity for minimizers of nonconvex integrals,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 16 (1989), 603.   Google Scholar

[3]

G. Anzellotti and M. Giaquinta, Convex functionals and partial regularity,, Arch. Rational Mech. Anal., 102 (1988), 243.  doi: 10.1007/BF00281349.  Google Scholar

[4]

L. Brasco, Global $L^\infty$ gradient estimates for solutions to a certain degenerate elliptic equation,, Nonlinear Anal., 74 (2011), 516.  doi: 10.1016/j.na.2010.09.006.  Google Scholar

[5]

L. Brasco, G. Carlier and F. Santambrogio, Congested traffic dynamics, weak flows and very degenerate elliptic equations,, J. Math. Pures Appl., 93 (2010), 652.  doi: 10.1016/j.matpur.2010.03.010.  Google Scholar

[6]

M. Colombo and A. Figalli, Regularity results for very degenerate elliptic equations,, J. Math. Pures Appl., 101 (2014), 94.  doi: 10.1016/j.matpur.2013.05.005.  Google Scholar

[7]

D. De Silva and O. Savin, Minimizers of convex functionals arising in random surfaces,, Duke Math. J., 151 (2010), 487.  doi: 10.1215/00127094-2010-004.  Google Scholar

[8]

E. DiBenedetto, $C^{1+\alpha }$ local regularity of weak solutions of degenerate elliptic equations,, Nonlinear Anal., 7 (1983), 827.  doi: 10.1016/0362-546X(83)90061-5.  Google Scholar

[9]

L. Esposito, G. Mingione and C. Trombetti, On the Lipschitz regularity for certain elliptic problems,, Forum Math., 18 (2006), 263.  doi: 10.1515/FORUM.2006.016.  Google Scholar

[10]

L. C. Evans, A new proof of local $C^{1,\alpha }$ regularity for solutions of certain degenerate elliptic p.d.e.,, J. Differential Equations, 45 (1982), 356.  doi: 10.1016/0022-0396(82)90033-X.  Google Scholar

[11]

I. Fonseca, N. Fusco and P. Marcellini, An existence result for a nonconvex variational problem via regularity,, ESAIM Control Optim. Calc. Var., 7 (2002), 69.  doi: 10.1051/cocv:2002004.  Google Scholar

[12]

M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems,, Princeton Univ. Press, (1983).   Google Scholar

[13]

M. Giaquinta and G. Modica, Partial regularity of minimizers of quasiconvex integrals,, Ann. Inst. H. Poincaré, 3 (1986), 185.   Google Scholar

[14]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, reprint of the 1998 edition, (1998).   Google Scholar

[15]

C. Imbert and L. Silvestre, Estimates on elliptic equations that hold only where the gradient is large,, preprint, (2013).   Google Scholar

[16]

J. L. Lewis, Regularity of the derivatives of solutions to certain degenerate elliptic equations,, Indiana Univ. Math. J., 32 (1983), 849.  doi: 10.1512/iumj.1983.32.32058.  Google Scholar

[17]

F. Santambrogio and V. Vespri, Continuity in two dimensions for a very degenerate elliptic equation,, Nonlinear Anal., 73 (2010), 3832.  doi: 10.1016/j.na.2010.08.008.  Google Scholar

[18]

O. Savin, Small perturbation solutions for elliptic equations,, Comm. Partial Differential Equations, 32 (2007), 557.  doi: 10.1080/03605300500394405.  Google Scholar

[19]

P. Tolksdorff, Regularity for a more general class of quasi-linear elliptic equations,, J. Differential Equations, 51 (1984), 126.  doi: 10.1016/0022-0396(84)90105-0.  Google Scholar

[20]

K. Uhlenbeck, Regularity for a class of non-linear elliptic systems,, Acta Math., 138 (1977), 219.  doi: 10.1007/BF02392316.  Google Scholar

[21]

N. N. Uraltseva, Degenerate quasilinear elliptic systems,, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 7 (1968), 184.   Google Scholar

[22]

L. Wang, Compactness methods for certain degenerate elliptic equations,, J. Differential Equations, 107 (1994), 341.  doi: 10.1006/jdeq.1994.1016.  Google Scholar

[1]

Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006

[2]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[3]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

[4]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[5]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[6]

Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020034

[7]

Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021002

[8]

Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521

[9]

Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021018

[10]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[11]

Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030

[12]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[13]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[14]

Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020297

[15]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[16]

João Vitor da Silva, Hernán Vivas. Sharp regularity for degenerate obstacle type problems: A geometric approach. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1359-1385. doi: 10.3934/dcds.2020321

[17]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[18]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[19]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[20]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]