Advanced Search
Article Contents
Article Contents

An excess-decay result for a class of degenerate elliptic equations

Abstract Related Papers Cited by
  • We consider a family of degenerate elliptic equations of the form div $(\nabla F(\nabla u)) = f$, where $F\in C^{1,1}$ is a convex function which is elliptic outside a ball.We prove an excess-decay estimate at points where $\nabla u$ is close to a nondegenerate value for $F$. This result applies to degenerate equations arising in traffic congestion, where we obtain continuity of $\nabla u$ outside the degeneracy, and to anisotropic versions of the $p$-laplacian, where we get Hölder regularity of $\nabla u$.
    Mathematics Subject Classification: Primary: 35J70; Secondary: 35B65, 49K20.


    \begin{equation} \\ \end{equation}
  • [1]

    E. Acerbi and N. Fusco, A regularity theorem for minimizers of quasiconvex integrals, Arch. Rational Mech. Anal., 99 (1987), 261-281.doi: 10.1007/BF00284509.


    E. Acerbi and N. Fusco, Local regularity for minimizers of nonconvex integrals, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 16 (1989), 603-636.


    G. Anzellotti and M. Giaquinta, Convex functionals and partial regularity, Arch. Rational Mech. Anal., 102 (1988), 243-272.doi: 10.1007/BF00281349.


    L. Brasco, Global $L^\infty$ gradient estimates for solutions to a certain degenerate elliptic equation, Nonlinear Anal., 74 (2011), 516-531.doi: 10.1016/j.na.2010.09.006.


    L. Brasco, G. Carlier and F. Santambrogio, Congested traffic dynamics, weak flows and very degenerate elliptic equations, J. Math. Pures Appl., 93 (2010), 652-671.doi: 10.1016/j.matpur.2010.03.010.


    M. Colombo and A. Figalli, Regularity results for very degenerate elliptic equations, J. Math. Pures Appl., 101 (2014), 94-117.doi: 10.1016/j.matpur.2013.05.005.


    D. De Silva and O. Savin, Minimizers of convex functionals arising in random surfaces, Duke Math. J., 151 (2010), 487-532.doi: 10.1215/00127094-2010-004.


    E. DiBenedetto, $C^{1+\alpha }$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), 827-850.doi: 10.1016/0362-546X(83)90061-5.


    L. Esposito, G. Mingione and C. Trombetti, On the Lipschitz regularity for certain elliptic problems, Forum Math., 18 (2006), 263-292.doi: 10.1515/FORUM.2006.016.


    L. C. Evans, A new proof of local $C^{1,\alpha }$ regularity for solutions of certain degenerate elliptic p.d.e., J. Differential Equations, 45 (1982), 356-373.doi: 10.1016/0022-0396(82)90033-X.


    I. Fonseca, N. Fusco and P. Marcellini, An existence result for a nonconvex variational problem via regularity, ESAIM Control Optim. Calc. Var., 7 (2002), 69-95.doi: 10.1051/cocv:2002004.


    M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton Univ. Press, Princeton, 1983.


    M. Giaquinta and G. Modica, Partial regularity of minimizers of quasiconvex integrals, Ann. Inst. H. Poincaré, Analyse non linéaire, 3 (1986), 185-208.


    D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, reprint of the 1998 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2001.


    C. Imbert and L. Silvestre, Estimates on elliptic equations that hold only where the gradient is large, preprint, (2013).


    J. L. Lewis, Regularity of the derivatives of solutions to certain degenerate elliptic equations, Indiana Univ. Math. J., 32 (1983), 849-858.doi: 10.1512/iumj.1983.32.32058.


    F. Santambrogio and V. Vespri, Continuity in two dimensions for a very degenerate elliptic equation, Nonlinear Anal., 73 (2010), 3832-3841.doi: 10.1016/j.na.2010.08.008.


    O. Savin, Small perturbation solutions for elliptic equations, Comm. Partial Differential Equations, 32 (2007), 557-578.doi: 10.1080/03605300500394405.


    P. Tolksdorff, Regularity for a more general class of quasi-linear elliptic equations, J. Differential Equations, 51 (1984), 126-150.doi: 10.1016/0022-0396(84)90105-0.


    K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math., 138 (1977), 219-240.doi: 10.1007/BF02392316.


    N. N. Uraltseva, Degenerate quasilinear elliptic systems, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 7 (1968), 184-222.


    L. Wang, Compactness methods for certain degenerate elliptic equations, J. Differential Equations, 107 (1994), 341-350.doi: 10.1006/jdeq.1994.1016.

  • 加载中
Open Access Under a Creative Commons license

Article Metrics

HTML views() PDF downloads(121) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint