August  2014, 7(4): 653-671. doi: 10.3934/dcdss.2014.7.653

Hardy-Littlewood-Sobolev systems and related Liouville theorems

1. 

Dipartimento di Matematica, Università degli Studi di Bari, via E.Orabona 4, I-70125 Bari, Italy

2. 

Dipartimento di Matematica e Geoscienze, Università di Trieste, via Alfonso Valerio 12/1, I-34100 Trieste, Italy

Received  November 2013 Published  February 2014

We prove some Liouville theorems for systems of integral equations and inequalities related to weighted Hardy-Littlewood-Sobolev inequality type on $R^N$ . Some semilinear singular or degenerate higher order elliptic inequalities associated to polyharmonic operators are considered. Special cases include the Hénon-Lane-Emden system.
Citation: Lorenzo D'Ambrosio, Enzo Mitidieri. Hardy-Littlewood-Sobolev systems and related Liouville theorems. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 653-671. doi: 10.3934/dcdss.2014.7.653
References:
[1]

H. Brezis and and S. Kamin, Sublinear elliptic equations in $R^N$,, Manuscripta Math., 74 (1992), 87.  doi: 10.1007/BF02567660.  Google Scholar

[2]

A. Björn and J. Biörn, Nonlinear Potential Theory on Metric Spaces,, EMS Tracts in Mathematics, (2011).  doi: 10.4171/099.  Google Scholar

[3]

G. Caristi, L. D'Ambrosio and E. Mitidieri, Liouville Theorems for some nonlinear inequalities,, Proc. Steklov Inst. Math., 260 (2008), 90.  doi: 10.1134/S0081543808010070.  Google Scholar

[4]

G. Caristi, L. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related liouville theorems,, Milan J. Math., 76 (2008), 27.  doi: 10.1007/s00032-008-0090-3.  Google Scholar

[5]

W. Chen, C. Jin, C. Li and Jisun Lim, Weighted Hardy-Littlewood-Sobolev inequalities and Systems of integral equations,, Disc. and Cont. Dynamics Sys. Supplement, (2005), 164.   Google Scholar

[6]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. in Partial Differential Equations, 30 (2005), 59.  doi: 10.1081/PDE-200044445.  Google Scholar

[7]

W. Chen and C. Li, Regularity of solutions for a system of integral equations,, Comm. Pure and Appl. Anal., 4 (2005), 1.   Google Scholar

[8]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[9]

C. Cowan, A Liouville theorem for a fourth order Hénon equation,, , ().   Google Scholar

[10]

L. D'Ambrosio, E. Mitidieri and S. I. Pohozaev, Representation formulae and inequalities for solutions of a class of second order partial differential equations,, Trans. Amer. Math. Soc., 358 (2005), 893.  doi: 10.1090/S0002-9947-05-03717-7.  Google Scholar

[11]

L. Euler, Specimen transformationis singularis serierum,, Nova Acta Acad. Petropol., 7 (1778), 58.   Google Scholar

[12]

M. Fazly and N. Ghoussoub, On the Hénon-Lane-Emden conjecture,, , ().   Google Scholar

[13]

J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations,, Oxford University Press, (1993).   Google Scholar

[14]

W. K. Hayman and P. B. Kennedy, Subharmonic functions,, I, (1976).   Google Scholar

[15]

C. Jin and C. Li, Qualitative Analysis of Some Systems of Integral Equations,, Cal. Var. PDEs, 26 (2006), 447.  doi: 10.1007/s00526-006-0013-5.  Google Scholar

[16]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. Amer. Math. Soc., 134 (2006), 1661.  doi: 10.1090/S0002-9939-05-08411-X.  Google Scholar

[17]

Y. Y. Li, Remark on some conformally invariant integral equations: the method of moving spheres,, Journal of the European Mathematical Society, 6 (2004), 153.   Google Scholar

[18]

J. Liu, Y. Guo and Y. Zhang, Liouville-type theorem for polyharmonic systems in $R^N$,, J. Differential Eq., 225 (2006), 685.  doi: 10.1016/j.jde.2005.10.016.  Google Scholar

[19]

E. Mitidieri, Non existence of positive solutions of semilinear elliptic systems in $R^N$,, Differential & Integral Eq., 9 (1996), 465.   Google Scholar

[20]

E. Mitidieri and S. I. Pohozaev, A priori estimates and nonexistence of solutions to nonlinear partial differential equations and inequalities,, Proc. Steklov Inst. Math., 234 (2001), 1.   Google Scholar

[21]

E. M. Stein and G. Weiss, Fractional Integrals in n-dimensional Euclidean space,, J. Math. Mech., 7 (1958).   Google Scholar

[22]

X. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations,, Math. Ann., 313 (1999), 207.  doi: 10.1007/s002080050258.  Google Scholar

show all references

References:
[1]

H. Brezis and and S. Kamin, Sublinear elliptic equations in $R^N$,, Manuscripta Math., 74 (1992), 87.  doi: 10.1007/BF02567660.  Google Scholar

[2]

A. Björn and J. Biörn, Nonlinear Potential Theory on Metric Spaces,, EMS Tracts in Mathematics, (2011).  doi: 10.4171/099.  Google Scholar

[3]

G. Caristi, L. D'Ambrosio and E. Mitidieri, Liouville Theorems for some nonlinear inequalities,, Proc. Steklov Inst. Math., 260 (2008), 90.  doi: 10.1134/S0081543808010070.  Google Scholar

[4]

G. Caristi, L. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related liouville theorems,, Milan J. Math., 76 (2008), 27.  doi: 10.1007/s00032-008-0090-3.  Google Scholar

[5]

W. Chen, C. Jin, C. Li and Jisun Lim, Weighted Hardy-Littlewood-Sobolev inequalities and Systems of integral equations,, Disc. and Cont. Dynamics Sys. Supplement, (2005), 164.   Google Scholar

[6]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. in Partial Differential Equations, 30 (2005), 59.  doi: 10.1081/PDE-200044445.  Google Scholar

[7]

W. Chen and C. Li, Regularity of solutions for a system of integral equations,, Comm. Pure and Appl. Anal., 4 (2005), 1.   Google Scholar

[8]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[9]

C. Cowan, A Liouville theorem for a fourth order Hénon equation,, , ().   Google Scholar

[10]

L. D'Ambrosio, E. Mitidieri and S. I. Pohozaev, Representation formulae and inequalities for solutions of a class of second order partial differential equations,, Trans. Amer. Math. Soc., 358 (2005), 893.  doi: 10.1090/S0002-9947-05-03717-7.  Google Scholar

[11]

L. Euler, Specimen transformationis singularis serierum,, Nova Acta Acad. Petropol., 7 (1778), 58.   Google Scholar

[12]

M. Fazly and N. Ghoussoub, On the Hénon-Lane-Emden conjecture,, , ().   Google Scholar

[13]

J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations,, Oxford University Press, (1993).   Google Scholar

[14]

W. K. Hayman and P. B. Kennedy, Subharmonic functions,, I, (1976).   Google Scholar

[15]

C. Jin and C. Li, Qualitative Analysis of Some Systems of Integral Equations,, Cal. Var. PDEs, 26 (2006), 447.  doi: 10.1007/s00526-006-0013-5.  Google Scholar

[16]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations,, Proc. Amer. Math. Soc., 134 (2006), 1661.  doi: 10.1090/S0002-9939-05-08411-X.  Google Scholar

[17]

Y. Y. Li, Remark on some conformally invariant integral equations: the method of moving spheres,, Journal of the European Mathematical Society, 6 (2004), 153.   Google Scholar

[18]

J. Liu, Y. Guo and Y. Zhang, Liouville-type theorem for polyharmonic systems in $R^N$,, J. Differential Eq., 225 (2006), 685.  doi: 10.1016/j.jde.2005.10.016.  Google Scholar

[19]

E. Mitidieri, Non existence of positive solutions of semilinear elliptic systems in $R^N$,, Differential & Integral Eq., 9 (1996), 465.   Google Scholar

[20]

E. Mitidieri and S. I. Pohozaev, A priori estimates and nonexistence of solutions to nonlinear partial differential equations and inequalities,, Proc. Steklov Inst. Math., 234 (2001), 1.   Google Scholar

[21]

E. M. Stein and G. Weiss, Fractional Integrals in n-dimensional Euclidean space,, J. Math. Mech., 7 (1958).   Google Scholar

[22]

X. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations,, Math. Ann., 313 (1999), 207.  doi: 10.1007/s002080050258.  Google Scholar

[1]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[2]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[3]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[4]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[5]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[6]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[7]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[8]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[9]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[10]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[11]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[12]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[13]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[14]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[15]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[16]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[17]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[18]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[19]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[20]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (131)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]