August  2014, 7(4): 673-693. doi: 10.3934/dcdss.2014.7.673

On two phase free boundary problems governed by elliptic equations with distributed sources

1. 

Department of Mathematics, Barnard College, Columbia University, 2990 Broadway, New York, NY 10027, United States

2. 

Dipartimento di Matematica dell'Università di Bologna, Piazza di Porta S. Donato, 5, 40126 Bologna

3. 

Dipartimento di Matematica del Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy

Received  November 2013 Published  February 2014

We present some recent progress on the analysis of two-phase free boundary problems governed by elliptic operators, with non-zero right hand side. We also discuss on several open questions, object of future investigations.
Citation: Daniela De Silva, Fausto Ferrari, Sandro Salsa. On two phase free boundary problems governed by elliptic equations with distributed sources. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 673-693. doi: 10.3934/dcdss.2014.7.673
References:
[1]

H. W. Alt, L. A. Caffarelli and A. Friedman, Variational problems with two ohases and their free boundaries,, T.A.M.S., 282 (1984), 431.  doi: 10.1090/S0002-9947-1984-0732100-6.  Google Scholar

[2]

C. J. Amick, L. E. Fraenkel and J. F. Toland, On the Stokes conjecture for the wave of extreme form,, Acta Math., 148 (1982), 193.  doi: 10.1007/BF02392728.  Google Scholar

[3]

R. Argiolas and F. Ferrari, Flat free boundaries regularity in two-phase problems for a class of fully nonlinear elliptic operators with variable coefficients,, Interfaces Free Bound, 11 (2009), 177.  doi: 10.4171/IFB/208.  Google Scholar

[4]

G. K. Batchelor, On steady laminar flow with closed streamlines at large Reynolds number,, J. Fluid. Mech., 1 (1956), 177.  doi: 10.1017/S0022112056000123.  Google Scholar

[5]

L. A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. Part I: Lipschitz free boundaries are $ C^{1,\alpha }$,, Rev. Mat. Iberoamericana, 3 (1987), 139.  doi: 10.4171/RMI/47.  Google Scholar

[6]

L. A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. Part II: Flat free boundaries are Lipschitz,, Comm. Pure Appl. Math., 42 (1989), 55.  doi: 10.1002/cpa.3160420105.  Google Scholar

[7]

L. A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. Part III: Existence theory, compactness and dependence on $x$,, Ann. Sc. Norm., XV (1988), 583.   Google Scholar

[8]

L. A. Caffarelli, D. Jerison and C. E.Kenig, Some new monotonicity theorems with applications to free boundary problems,, Ann. of Math. (2), 155 (2002), 369.  doi: 10.2307/3062121.  Google Scholar

[9]

L. A. Caffarelli, D. Jerison and C. E.Kenig, Global energy minimizers for free boundary problems and full regularity in three dimensions,, Contemporary Math., 350 (2004), 83.  doi: 10.1090/conm/350/06339.  Google Scholar

[10]

L. A. Caffarelli and X. Cabre, Fully Nonlinear Elliptic Equations,, Colloquium Publications, (1995).   Google Scholar

[11]

A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity,, Comm. Pure Appl. Math., 57 (2004), 481.  doi: 10.1002/cpa.3046.  Google Scholar

[12]

D. De Silva, Free boundary regularity for a problem with right hand side,, Interfaces and Free Boundaries, 13 (2011), 223.  doi: 10.4171/IFB/255.  Google Scholar

[13]

D. De Silva, F. Ferrari and S. Salsa, Two-phase problems with distributed source: regularity of the free boundary,, to appear in Analysis & PDE, (2012).   Google Scholar

[14]

D. De Silva, F. Ferrari and S. Salsa, Free boundary regularity for fully nonlinear non-homogeneous two-phase problems,, preprint, (2013).   Google Scholar

[15]

D. De Silva and D. Jerison, Asingular energy minimizing free boundary,, J. reine angew. Math., 635 (2009), 1.  doi: 10.1515/CRELLE.2009.074.  Google Scholar

[16]

D. De Silva and J. Roquejoffre, Regularity in a one-phase free boundary problem for the fractional Laplacian,, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 29 (2012), 335.  doi: 10.1016/j.anihpc.2011.11.003.  Google Scholar

[17]

A. R. Elcrat and K. G. Miller, Variational formulas on Lipschitz domains,, T.A.M.S., 347 (1995), 2669.  doi: 10.1090/S0002-9947-1995-1285987-2.  Google Scholar

[18]

M. Feldman, Regularity of Lipschitz free boundaries in two-phase problems for fully nonlinear elliptic equations,, Indiana Univ. Math. J., 50 (2001), 1171.  doi: 10.1512/iumj.2001.50.1921.  Google Scholar

[19]

F. Ferrari and S. Salsa, Regularity of the free boundary in two-phase problems for elliptic operators,, Adv. Math., 214 (2007), 288.  doi: 10.1016/j.aim.2007.02.004.  Google Scholar

[20]

C. Lederman and N. Wolanski, A two phase elliptic singular perturbation problem with a forcing term,, J. Math. Pures Appl., 86 (2006), 552.  doi: 10.1016/j.matpur.2006.10.008.  Google Scholar

[21]

N. Matevosyan and A. Petrosyan, Almost monotonicity formulas for elliptic and parabolic operators with variable coefficients,, Comm. Pure Appl. Math., 44 (2011), 271.  doi: 10.1002/cpa.20349.  Google Scholar

[22]

P. I. Plotnikov, Proof of the Stokes conjecture in the theory of surface waves,, Translated from Dinamika Sploshn, 108 (1982), 41.  doi: 10.1111/1467-9590.01408.  Google Scholar

[23]

O. Savin, Small perturbation solutions for elliptic equations,, Comm. Partial Differential Equations, 32 (2007), 557.  doi: 10.1080/03605300500394405.  Google Scholar

[24]

E. Varvaruca, On the existence of extreme waves and the Stokes conjecture with vorticity,, J. Differential Equations, 246 (2009), 4043.  doi: 10.1016/j.jde.2008.12.018.  Google Scholar

[25]

E. Varvaruca and G. S. Weiss, A geometric approach to generalized Stokes conjectures,, Acta Math., 206 (2009), 363.  doi: 10.1007/s11511-011-0066-y.  Google Scholar

[26]

P. Y. Wang, Existence of solutions of two-phase free boundary problems for fully nonlinear elliptic equations of second order,, The Journal of Geometric Analysis, 13 (2003), 715.  doi: 10.1007/BF02921886.  Google Scholar

show all references

References:
[1]

H. W. Alt, L. A. Caffarelli and A. Friedman, Variational problems with two ohases and their free boundaries,, T.A.M.S., 282 (1984), 431.  doi: 10.1090/S0002-9947-1984-0732100-6.  Google Scholar

[2]

C. J. Amick, L. E. Fraenkel and J. F. Toland, On the Stokes conjecture for the wave of extreme form,, Acta Math., 148 (1982), 193.  doi: 10.1007/BF02392728.  Google Scholar

[3]

R. Argiolas and F. Ferrari, Flat free boundaries regularity in two-phase problems for a class of fully nonlinear elliptic operators with variable coefficients,, Interfaces Free Bound, 11 (2009), 177.  doi: 10.4171/IFB/208.  Google Scholar

[4]

G. K. Batchelor, On steady laminar flow with closed streamlines at large Reynolds number,, J. Fluid. Mech., 1 (1956), 177.  doi: 10.1017/S0022112056000123.  Google Scholar

[5]

L. A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. Part I: Lipschitz free boundaries are $ C^{1,\alpha }$,, Rev. Mat. Iberoamericana, 3 (1987), 139.  doi: 10.4171/RMI/47.  Google Scholar

[6]

L. A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. Part II: Flat free boundaries are Lipschitz,, Comm. Pure Appl. Math., 42 (1989), 55.  doi: 10.1002/cpa.3160420105.  Google Scholar

[7]

L. A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. Part III: Existence theory, compactness and dependence on $x$,, Ann. Sc. Norm., XV (1988), 583.   Google Scholar

[8]

L. A. Caffarelli, D. Jerison and C. E.Kenig, Some new monotonicity theorems with applications to free boundary problems,, Ann. of Math. (2), 155 (2002), 369.  doi: 10.2307/3062121.  Google Scholar

[9]

L. A. Caffarelli, D. Jerison and C. E.Kenig, Global energy minimizers for free boundary problems and full regularity in three dimensions,, Contemporary Math., 350 (2004), 83.  doi: 10.1090/conm/350/06339.  Google Scholar

[10]

L. A. Caffarelli and X. Cabre, Fully Nonlinear Elliptic Equations,, Colloquium Publications, (1995).   Google Scholar

[11]

A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity,, Comm. Pure Appl. Math., 57 (2004), 481.  doi: 10.1002/cpa.3046.  Google Scholar

[12]

D. De Silva, Free boundary regularity for a problem with right hand side,, Interfaces and Free Boundaries, 13 (2011), 223.  doi: 10.4171/IFB/255.  Google Scholar

[13]

D. De Silva, F. Ferrari and S. Salsa, Two-phase problems with distributed source: regularity of the free boundary,, to appear in Analysis & PDE, (2012).   Google Scholar

[14]

D. De Silva, F. Ferrari and S. Salsa, Free boundary regularity for fully nonlinear non-homogeneous two-phase problems,, preprint, (2013).   Google Scholar

[15]

D. De Silva and D. Jerison, Asingular energy minimizing free boundary,, J. reine angew. Math., 635 (2009), 1.  doi: 10.1515/CRELLE.2009.074.  Google Scholar

[16]

D. De Silva and J. Roquejoffre, Regularity in a one-phase free boundary problem for the fractional Laplacian,, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 29 (2012), 335.  doi: 10.1016/j.anihpc.2011.11.003.  Google Scholar

[17]

A. R. Elcrat and K. G. Miller, Variational formulas on Lipschitz domains,, T.A.M.S., 347 (1995), 2669.  doi: 10.1090/S0002-9947-1995-1285987-2.  Google Scholar

[18]

M. Feldman, Regularity of Lipschitz free boundaries in two-phase problems for fully nonlinear elliptic equations,, Indiana Univ. Math. J., 50 (2001), 1171.  doi: 10.1512/iumj.2001.50.1921.  Google Scholar

[19]

F. Ferrari and S. Salsa, Regularity of the free boundary in two-phase problems for elliptic operators,, Adv. Math., 214 (2007), 288.  doi: 10.1016/j.aim.2007.02.004.  Google Scholar

[20]

C. Lederman and N. Wolanski, A two phase elliptic singular perturbation problem with a forcing term,, J. Math. Pures Appl., 86 (2006), 552.  doi: 10.1016/j.matpur.2006.10.008.  Google Scholar

[21]

N. Matevosyan and A. Petrosyan, Almost monotonicity formulas for elliptic and parabolic operators with variable coefficients,, Comm. Pure Appl. Math., 44 (2011), 271.  doi: 10.1002/cpa.20349.  Google Scholar

[22]

P. I. Plotnikov, Proof of the Stokes conjecture in the theory of surface waves,, Translated from Dinamika Sploshn, 108 (1982), 41.  doi: 10.1111/1467-9590.01408.  Google Scholar

[23]

O. Savin, Small perturbation solutions for elliptic equations,, Comm. Partial Differential Equations, 32 (2007), 557.  doi: 10.1080/03605300500394405.  Google Scholar

[24]

E. Varvaruca, On the existence of extreme waves and the Stokes conjecture with vorticity,, J. Differential Equations, 246 (2009), 4043.  doi: 10.1016/j.jde.2008.12.018.  Google Scholar

[25]

E. Varvaruca and G. S. Weiss, A geometric approach to generalized Stokes conjectures,, Acta Math., 206 (2009), 363.  doi: 10.1007/s11511-011-0066-y.  Google Scholar

[26]

P. Y. Wang, Existence of solutions of two-phase free boundary problems for fully nonlinear elliptic equations of second order,, The Journal of Geometric Analysis, 13 (2003), 715.  doi: 10.1007/BF02921886.  Google Scholar

[1]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[2]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[3]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[4]

Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286

[5]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[6]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[7]

Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046

[8]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[9]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[10]

Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381

[11]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[12]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[13]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[14]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[15]

Xin Zhong. Singularity formation to the nonhomogeneous magneto-micropolar fluid equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021021

[16]

Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327

[17]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[18]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[19]

Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380

[20]

Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger Equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020392

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]