\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On two phase free boundary problems governed by elliptic equations with distributed sources

Abstract / Introduction Related Papers Cited by
  • We present some recent progress on the analysis of two-phase free boundary problems governed by elliptic operators, with non-zero right hand side. We also discuss on several open questions, object of future investigations.
    Mathematics Subject Classification: Primary: 35J25, 35R35; Secondary: 35J60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. W. Alt, L. A. Caffarelli and A. Friedman, Variational problems with two ohases and their free boundaries, T.A.M.S., 282 (1984), 431-461.doi: 10.1090/S0002-9947-1984-0732100-6.

    [2]

    C. J. Amick, L. E. Fraenkel and J. F. Toland, On the Stokes conjecture for the wave of extreme form, Acta Math., 148 (1982), 193-214.doi: 10.1007/BF02392728.

    [3]

    R. Argiolas and F. Ferrari, Flat free boundaries regularity in two-phase problems for a class of fully nonlinear elliptic operators with variable coefficients, Interfaces Free Bound, 11 (2009), 177-199.doi: 10.4171/IFB/208.

    [4]

    G. K. Batchelor, On steady laminar flow with closed streamlines at large Reynolds number, J. Fluid. Mech., 1 (1956), 177-190.doi: 10.1017/S0022112056000123.

    [5]

    L. A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. Part I: Lipschitz free boundaries are $ C^{1,\alpha }$, Rev. Mat. Iberoamericana, 3 (1987), 139-162.doi: 10.4171/RMI/47.

    [6]

    L. A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. Part II: Flat free boundaries are Lipschitz, Comm. Pure Appl. Math., 42 (1989), 55-78.doi: 10.1002/cpa.3160420105.

    [7]

    L. A. Caffarelli, A Harnack inequality approach to the regularity of free boundaries. Part III: Existence theory, compactness and dependence on $x$, Ann. Sc. Norm., XV (1988), 583-602.

    [8]

    L. A. Caffarelli, D. Jerison and C. E.Kenig, Some new monotonicity theorems with applications to free boundary problems, Ann. of Math. (2), 155 (2002), 369-404.doi: 10.2307/3062121.

    [9]

    L. A. Caffarelli, D. Jerison and C. E.Kenig, Global energy minimizers for free boundary problems and full regularity in three dimensions, Contemporary Math., 350 (2004), 83-97.doi: 10.1090/conm/350/06339.

    [10]

    L. A. Caffarelli and X. Cabre, Fully Nonlinear Elliptic Equations, Colloquium Publications, 43, American Mathematical Society, Providence, RI, 1995.

    [11]

    A. Constantin and W. Strauss, Exact steady periodic water waves with vorticity, Comm. Pure Appl. Math., 57 (2004), 481-527.doi: 10.1002/cpa.3046.

    [12]

    D. De Silva, Free boundary regularity for a problem with right hand side, Interfaces and Free Boundaries, 13 (2011), 223-238.doi: 10.4171/IFB/255.

    [13]

    D. De Silva, F. Ferrari and S. Salsa, Two-phase problems with distributed source: regularity of the free boundary, to appear in Analysis & PDE, (2012), arXiv:1210.7226.

    [14]

    D. De Silva, F. Ferrari and S. Salsa, Free boundary regularity for fully nonlinear non-homogeneous two-phase problems, preprint, (2013), arXiv:1304.0406v2.

    [15]

    D. De Silva and D. Jerison, Asingular energy minimizing free boundary, J. reine angew. Math., 635 (2009), 1-21.doi: 10.1515/CRELLE.2009.074.

    [16]

    D. De Silva and J. Roquejoffre, Regularity in a one-phase free boundary problem for the fractional Laplacian, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 29 (2012), 335-367.doi: 10.1016/j.anihpc.2011.11.003.

    [17]

    A. R. Elcrat and K. G. Miller, Variational formulas on Lipschitz domains, T.A.M.S., 347 (1995), 2669-2678.doi: 10.1090/S0002-9947-1995-1285987-2.

    [18]

    M. Feldman, Regularity of Lipschitz free boundaries in two-phase problems for fully nonlinear elliptic equations, Indiana Univ. Math. J., 50 (2001), 1171-1200.doi: 10.1512/iumj.2001.50.1921.

    [19]

    F. Ferrari and S. Salsa, Regularity of the free boundary in two-phase problems for elliptic operators, Adv. Math., 214 (2007), 288-322.doi: 10.1016/j.aim.2007.02.004.

    [20]

    C. Lederman and N. Wolanski, A two phase elliptic singular perturbation problem with a forcing term, J. Math. Pures Appl., 86 (2006), 552-589.doi: 10.1016/j.matpur.2006.10.008.

    [21]

    N. Matevosyan and A. Petrosyan, Almost monotonicity formulas for elliptic and parabolic operators with variable coefficients, Comm. Pure Appl. Math., 44 (2011), 271-311.doi: 10.1002/cpa.20349.

    [22]

    P. I. Plotnikov, Proof of the Stokes conjecture in the theory of surface waves, Translated from Dinamika Sploshn, Sredy No. 57, (1982), 41-76; Stud. Appl. Math., 108 (2002), 217-244.doi: 10.1111/1467-9590.01408.

    [23]

    O. Savin, Small perturbation solutions for elliptic equations, Comm. Partial Differential Equations, 32 (2007), 557-578.doi: 10.1080/03605300500394405.

    [24]

    E. Varvaruca, On the existence of extreme waves and the Stokes conjecture with vorticity, J. Differential Equations, 246 (2009), 4043-4076.doi: 10.1016/j.jde.2008.12.018.

    [25]

    E. Varvaruca and G. S. Weiss, A geometric approach to generalized Stokes conjectures, Acta Math., 206 (2009), 363-403.doi: 10.1007/s11511-011-0066-y.

    [26]

    P. Y. Wang, Existence of solutions of two-phase free boundary problems for fully nonlinear elliptic equations of second order, The Journal of Geometric Analysis, 13 (2003), 715-738.doi: 10.1007/BF02921886.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(117) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return