\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Special asymptotics for a critical fast diffusion equation

Abstract / Introduction Related Papers Cited by
  • We find a continuum of extinction rates of solutions of the Cauchy problem for the fast diffusion equation $u_\tau=\nabla\cdot(u^{m-1}\,\nabla u)$ with $m=m_*:=(n-4)/(n-2)$, here $n>2$ is the space-dimension. The extinction rates depend explicitly on the spatial decay rates of initial data and contain a logarithmic term.
    Mathematics Subject Classification: Primary: 35K65; Secondary: 35B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Nat. Bureau of Standards, Washington, D. C., 1964.

    [2]

    J. G. Berryman and C. J. Holland, Stability of the separable solution for fast diffusion, Arch. Rat. Mech. Anal., 74 (1980), 379-388.doi: 10.1007/BF00249681.

    [3]

    A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo and J. L. Vázquez, Asymptotics of the fast diffusion equation via entropy estimates, Arch. Rat. Mech. Anal., 191 (2009), 347-385.doi: 10.1007/s00205-008-0155-z.

    [4]

    M. Bonforte, J. Dolbeault, G. Grillo and J. L. Vázquez, Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities, Proc. Nat. Acad. Sciences, 107 (2010), 16459-16464.doi: 10.1073/pnas.1003972107.

    [5]

    M. Bonforte, G. Grillo and J. L. Vázquez, Special fast diffusion with slow asymptotics. Entropy method and flow on a Riemannian manifold, Arch. Rat. Mech. Anal., 196 (2010), 631-680.doi: 10.1007/s00205-009-0252-7.

    [6]

    M. Bonforte, G. Grillo and J. L. Vázquez, Behaviour near extinction for the Fast Diffusion Equation on bounded domains, J. Math. Pures Appl., 97 (2012), 1-38.doi: 10.1016/j.matpur.2011.03.002.

    [7]

    P. Daskalopoulos and N. Sesum, On the extinction profile of solutions to fast diffusion, J. Reine Angew. Math., 622 (2008), 95-119.doi: 10.1515/CRELLE.2008.066.

    [8]

    M. del Pino and M. Sáez, On the extinction profile for solutions of $u_t=\Delta u^{(N-2)/(N+2)}$, Indiana Univ. Math. J., 50 (2001), 611-628.doi: 10.1512/iumj.2001.50.1876.

    [9]

    E. Feireisl and F. Simondon, Convergence for semilinear degenerate parabolic equations in several space dimensions, J. Dyn. Diff. Eq., 12 (2000), 647-673.doi: 10.1023/A:1026467729263.

    [10]

    M. Fila, J. R. King and M. Winkler, Rate of convergence to Barenblatt profiles for the fast diffusion equation with a critical exponent, preprint, arXiv:1309.6173.

    [11]

    M. Fila, J. L. Vázquez and M. Winkler, A continuum of extinction rates for the fast diffusion equation, Comm. Pure Appl. Anal., 10 (2011), 1129-1147.doi: 10.3934/cpaa.2011.10.1129.

    [12]

    M. Fila, J. L. Vázquez, M. Winkler and E. Yanagida, Rate of convergence to Barenblatt profiles for the fast diffusion equation, Arch. Rat. Mech. Anal., 204 (2012), 599-625.doi: 10.1007/s00205-011-0486-z.

    [13]

    M. Fila and M. Winkler, Optimal rates of convergence to the singular Barenblatt profile for the fast diffusion equation, preprint.

    [14]

    V. A. Galaktionov and L. A. Peletier, Asymptotic behaviour near finite-time extinction for the fast diffusion equation, Arch. Rat. Mech. Anal., 139 (1997), 83-98.doi: 10.1007/s002050050048.

    [15]

    J. R. King, Self-similar behaviour for the equation of fast nonlinear diffusion, Phil. Trans. Roy. Soc. Lond. A, 343 (1993), 337-375.doi: 10.1098/rsta.1993.0052.

    [16]

    M. A. Peletier and H. Zhang, Self-similar solutions of a fast diffusion equation that do not conserve mass, Diff. Int. Equations, 8 (1995), 2045-2064.

    [17]

    J. L. Vázquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations, Oxford Lecture Notes in Maths. and its Applications, 33, Oxford University Press, Oxford, 2006.doi: 10.1093/acprof:oso/9780199202973.001.0001.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(88) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return