Citation: |
[1] |
M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Nat. Bureau of Standards, Washington, D. C., 1964. |
[2] |
J. G. Berryman and C. J. Holland, Stability of the separable solution for fast diffusion, Arch. Rat. Mech. Anal., 74 (1980), 379-388.doi: 10.1007/BF00249681. |
[3] |
A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo and J. L. Vázquez, Asymptotics of the fast diffusion equation via entropy estimates, Arch. Rat. Mech. Anal., 191 (2009), 347-385.doi: 10.1007/s00205-008-0155-z. |
[4] |
M. Bonforte, J. Dolbeault, G. Grillo and J. L. Vázquez, Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities, Proc. Nat. Acad. Sciences, 107 (2010), 16459-16464.doi: 10.1073/pnas.1003972107. |
[5] |
M. Bonforte, G. Grillo and J. L. Vázquez, Special fast diffusion with slow asymptotics. Entropy method and flow on a Riemannian manifold, Arch. Rat. Mech. Anal., 196 (2010), 631-680.doi: 10.1007/s00205-009-0252-7. |
[6] |
M. Bonforte, G. Grillo and J. L. Vázquez, Behaviour near extinction for the Fast Diffusion Equation on bounded domains, J. Math. Pures Appl., 97 (2012), 1-38.doi: 10.1016/j.matpur.2011.03.002. |
[7] |
P. Daskalopoulos and N. Sesum, On the extinction profile of solutions to fast diffusion, J. Reine Angew. Math., 622 (2008), 95-119.doi: 10.1515/CRELLE.2008.066. |
[8] |
M. del Pino and M. Sáez, On the extinction profile for solutions of $u_t=\Delta u^{(N-2)/(N+2)}$, Indiana Univ. Math. J., 50 (2001), 611-628.doi: 10.1512/iumj.2001.50.1876. |
[9] |
E. Feireisl and F. Simondon, Convergence for semilinear degenerate parabolic equations in several space dimensions, J. Dyn. Diff. Eq., 12 (2000), 647-673.doi: 10.1023/A:1026467729263. |
[10] |
M. Fila, J. R. King and M. Winkler, Rate of convergence to Barenblatt profiles for the fast diffusion equation with a critical exponent, preprint, arXiv:1309.6173. |
[11] |
M. Fila, J. L. Vázquez and M. Winkler, A continuum of extinction rates for the fast diffusion equation, Comm. Pure Appl. Anal., 10 (2011), 1129-1147.doi: 10.3934/cpaa.2011.10.1129. |
[12] |
M. Fila, J. L. Vázquez, M. Winkler and E. Yanagida, Rate of convergence to Barenblatt profiles for the fast diffusion equation, Arch. Rat. Mech. Anal., 204 (2012), 599-625.doi: 10.1007/s00205-011-0486-z. |
[13] |
M. Fila and M. Winkler, Optimal rates of convergence to the singular Barenblatt profile for the fast diffusion equation, preprint. |
[14] |
V. A. Galaktionov and L. A. Peletier, Asymptotic behaviour near finite-time extinction for the fast diffusion equation, Arch. Rat. Mech. Anal., 139 (1997), 83-98.doi: 10.1007/s002050050048. |
[15] |
J. R. King, Self-similar behaviour for the equation of fast nonlinear diffusion, Phil. Trans. Roy. Soc. Lond. A, 343 (1993), 337-375.doi: 10.1098/rsta.1993.0052. |
[16] |
M. A. Peletier and H. Zhang, Self-similar solutions of a fast diffusion equation that do not conserve mass, Diff. Int. Equations, 8 (1995), 2045-2064. |
[17] |
J. L. Vázquez, Smoothing and Decay Estimates for Nonlinear Diffusion Equations, Oxford Lecture Notes in Maths. and its Applications, 33, Oxford University Press, Oxford, 2006.doi: 10.1093/acprof:oso/9780199202973.001.0001. |