Citation: |
[1] |
A. Attouch, "Variational Convergence for Functions and Operators," Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984. |
[2] |
A. Azevedo and L. Santos, Convergence of convex sets with gradient constraint, J. Convex Anal., 11 (2004), 285-301. |
[3] |
M. Biroli, Sur les inéquations paraboliques avec convexe dépendant du temps: Solution forte et solution faible, Riv. Mat., Univ. Parma, 3 (1974), 33-72. |
[4] |
H. Brézis, "Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert," (French) North-Holland Mathematics Studies, No. 5, Notas de Matema'tica (50), North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. |
[5] |
H. Brézis, Problémes unilatéraux, (French) J. Math. Pures Appl., 51 (1972), 1-168. |
[6] |
K. H. Hoffmann, M. Kubo and N. Yamazaki, Optimal control problems for elliptic-parabolic variational inequalities with time-dependent constraints, Numer. Funct. Anal. Optim., 27 (2006), 329-356.doi: 10.1080/01630560600686116. |
[7] |
A. Kadoya, N. Kenmochi and Y. Murase, A class of nonlinear parabolic systems with environmental constraints, Adv. Math. Sci. Appl., 20 (2010), 281-313. |
[8] |
R. Kano, Applications of abstract parabolic quasi-variational inequalities to obstacle problems, in "Nonlocal and Abstract Parabolic Equations and their Applications," Banach Center Publ., 86, Polish Acad. Sci. Inst. Math., Warsaw, (2009), 163-174.doi: 10.4064/bc86-0-10. |
[9] |
R. Kano and A. Ito, The existence of time global solutions for tumor invasion models with constraints, Discrete Contin. Dyn. Syst., 2011, Dynamical Systems, Differential Equations and Applications, $8^{th}$ AIMS Conference, Suppl. Vol. II, 774-783. |
[10] |
R. Kano, A. Ito, K. Yamamoto and H. Nakayama, Quasi-variational inequality approach to tumor invasion models with constraints, GAKUTO Internat. Ser. Math. Sci. Appl., 32 (2010), 365-388. |
[11] |
R. Kano, N. Kenmochi and Y. Murase, Existence theorems for elliptic quasi-variational inequalities in Banach spaces, in "Recent Advance in Nonlinear Analysis," World Sci. Publ., Hackensack, NJ, (2008), 149-169.doi: 10.1142/9789812709257_0010. |
[12] |
R. Kano, N. Kenmochi and Y. Murase, Nonlinear evolution equations generated by subdifferentials with nonlocal constraints, in "Nonlocal and Abstract Parabolic Equations and their Applications," Banach Center Publ., 86, Polish Acad. Sci. Inst. Math., Warsaw, (2009), 175-194.doi: 10.4064/bc86-0-11. |
[13] |
R. Kano, N. Kenmochi and Y. Murase, Parabolic quasi-variational inequalities with non-local constraints, Adv. Math. Sci. Appl., 19 (2009), 565-583. |
[14] |
R. Kano, N. Kenmochi and Y. Murase, Elliptic quasi-variational inequalities and applications, Discrete Contin. Dyn. Syst., 2009, Dynamical Systems, Differential Equations and Applications, $7^{th}$ AIMS Conference, suppl., 583-591. doi: 10.4064/bc86-0-15. |
[15] |
N. Kenmochi, Some nonlinear parabolic variational inequalities, Israel J. Math., 22 (1975), 304-331.doi: 10.1007/BF02761596. |
[16] |
N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications, Bull. Fac. Education, Chiba Univ., 30 (1981), 1-87. |
[17] |
N. Kenmochi, "Monotonicity and compactness methods for nonlinear variational inequalities," in "Handbook of Differential Equations: Stationary Partial Differential Equations," Vol. IV, Elsevier/North Holland, Amsterdam, (2007), 203-298.doi: 10.1016/S1874-5733(07)80007-6. |
[18] |
M. Kunze and J. F. Rodrigues, An elliptic quasi-variational inequality with gradient constraints and some of its applications, Math. Methods Appl. Sci., 23 (2000), 897-908.doi: 10.1002/1099-1476(20000710)23:10<897::AID-MMA141>3.0.CO;2-H. |
[19] |
F. Mignot and J.-P. Puel, Inéquations d'évolution paraboliques avec convexes d'épe- ndant du temps. Applications aux inéquations quasi variationnelles d'évolution, Arch. Rat. Mech. Anal., 64 (1977), 59-91.doi: 10.1007/BF00280179. |
[20] |
U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Advances in Math., 3 (1969), 510-585.doi: 10.1016/0001-8708(69)90009-7. |
[21] |
Y. Murase, Abstract quasi-variational inequalities of elliptic type and applications, in "Nonlocal and Abstract Parabolic Equations and their Applications," Banach Center Publ., 86, Polish Acad. Sci. Inst. Math., Warsaw, (2009), 235-246.doi: 10.4064/bc86-0-15. |
[22] |
J. F. Rodrigues, On a quasi-variational inequality arising in semiconductor theory, Revista Mat., Univ. Complutense Madrid, 5 (1992), 137-151. |
[23] |
J. F. Rodrigues and L. Santos, A parabolic quasi-variational inequality arising in a superconductivity model, Ann. Scuola Norm. Sup. Pisa, 29 (2000), 153-169. |
[24] |
U. Stefanelli, Nonlocal quasivariational evolution problems, J. Differential Equations, 229 (2006), 204-228.doi: 10.1016/j.jde.2006.05.004. |
[25] |
Y. Yamada, On nonlinear evolution equations generated by the subdifferentials, J. Fac. Sci., Univ. Tokyo, Sect. IA, 23 (1976), 491-515. |