August  2014, 7(4): 785-791. doi: 10.3934/dcdss.2014.7.785

Oscillations in suspension bridges, vertical and torsional

1. 

Department of Mathematics, University of Connecticut, Storrs, CT 06269, United States

Received  November 2013 Published  February 2014

We first review some history prior to the failure of the Tacoma Narrows suspension bridge. Then we consider some popular accounts of this in the popular physics literature, and the scientific and scholarly basis for these accounts and point out some failings. Later, we give a quick introduction to three different models, one single particle, one a continuum model, and two systems with two degrees of freedom.
Citation: P. J. McKenna. Oscillations in suspension bridges, vertical and torsional. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 785-791. doi: 10.3934/dcdss.2014.7.785
References:
[1]

Ahmad M. Abdel-Ghaffar, Suspension bridge vibration: Continuum formulation,, Journal of Eng. Mech., 108 (1982), 1215.   Google Scholar

[2]

A. A. Abdel-Ghaffar and R. H. Scanlan, Ambient vibration studies of Golden Gate Bridge. Suspended structure,, Jour. Eng. Mech., 11 (1985), 463.   Google Scholar

[3]

N. U. Ahmed and H. Harbi, Mathematical analysis of dynamic models of suspension bridges,, SIAM J. Appl. Math., 58 (1998), 853.  doi: 10.1137/S0036139996308698.  Google Scholar

[4]

O. H. Ammann, T. von Karman and G. B. Woodruff, The Failure of the Tacoma Narrows Bridge,, Federal Works Agency, (1941).   Google Scholar

[5]

K. Y. Billah and R. H. Scanlan, Resonance, Tacoma Narrows bridge failure, and undergraduate physics textbooks,, Am. Jour. Physics, 59 (1991), 118.   Google Scholar

[6]

F. Bleich, C. B. McCullough, R. Rosecrans and G. S. Vincent, The Mathematical Theory of Suspension Bridges,, U.S. Dept. of Commerce, (1950).   Google Scholar

[7]

A. Castellani,, Safety margins of suspension bridges under seismic conditions,, J. Structural Eng., 113 (1987), 1600.   Google Scholar

[8]

Y. S. Choi, K. C. Jen and P. J. McKenna, The structure of the solution set for periodic oscillations in a suspension bridge model,, IMA J. Appl. Math, 47 (1991), 283.  doi: 10.1093/imamat/47.3.283.  Google Scholar

[9]

M. Diaferio and V. Sepe, Smoothed "slack cable" models for large amplitude oscillations of suspension bridges,, Mechanics Based Design of Structures and Machines, 32 (2004), 363.   Google Scholar

[10]

P. Drábek, H. Leinfelder and G. Tajčová, Coupled string-beam equations as a model of suspension bridges,, Appl. Math., 44 (1999), 97.  doi: 10.1023/A:1022257304738.  Google Scholar

[11]

P. Drábek and P. Nečesal, Nonlinear scalar model of a suspension bridge: existence of multiple periodic solutions,, Nonlinearity, 16 (2003), 1165.  doi: 10.1088/0951-7715/16/3/320.  Google Scholar

[12]

F. Gazzola and R. Pavani, Wide oscillation finite time blow up for solutions to nonlinear fourth order differential equations,, Arch. Ration. Mech. Anal., 207 (2013), 717.  doi: 10.1007/s00205-012-0569-5.  Google Scholar

[13]

J. Glover, A. C. Lazer and P. J. McKenna, Existence and stability of large-scale nonlinear oscillations in suspension bridges,, Z.A.M.P., 40 (1989), 171.  doi: 10.1007/BF00944997.  Google Scholar

[14]

D. Green and W. G. Unruh, The failure of the Tacoma Bridge: A physical model,, American J. Phys., 74 (2006), 706.  doi: 10.1119/1.2201854.  Google Scholar

[15]

A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis,, SIAM Rev., 32 (1990), 537.  doi: 10.1137/1032120.  Google Scholar

[16]

A. Larsen, Aerodynamics of the Tacoma Narrows Bridge-60 years later,, Structural Engineering International, 4 (2000), 243.   Google Scholar

[17]

P. J. McKenna, Large torsional oscillations in suspension bridges revisited: Fixing an old approximation,, Amer. Math. Monthly, 106 (1999), 1.  doi: 10.2307/2589581.  Google Scholar

[18]

P. J. McKenna and C. ÓTuama, Large torsional oscillations in suspension bridges visited again: Vertical forcing creates torsional response,, Amer. Math. Monthly, 108 (2001), 738.  doi: 10.2307/2695617.  Google Scholar

[19]

P. J. McKenna, Large-amplitude periodic oscillations in simple and complex mechanical systems: outgrowths from nonlinear analysis,, Milan J. Math, 74 (2006), 79.  doi: 10.1007/s00032-006-0052-6.  Google Scholar

[20]

P. J. McKenna and W. Walter, Nonlinear oscillations in a suspension bridge,, Arch. Rat. Mech. Anal., 98 (1987), 167.  doi: 10.1007/BF00251232.  Google Scholar

[21]

P. J. McKenna and W. Walter, Travelling waves in a suspension bridge,, SIAM J. of Applied Math, 50 (1990), 703.  doi: 10.1137/0150041.  Google Scholar

[22]

K. S. Moore, Large torsional oscillations in a suspension bridge: Multiple periodic solutions to a nonlinear wave equation,, SIAM J. Math. Anal., 33 (2002), 1411.  doi: 10.1137/S0036141001388099.  Google Scholar

[23]

R. H. Scanlan, Developments in low-speed aeroelasticity in the civil engineering field,, AIAA Journal, 20 (1982), 839.   Google Scholar

[24]

R. H. Scanlan and J. J. Tomko, Air foil and bridge deck flutter derivatives,, J. Eng. Mech. Division ASCE, 97 (1971), 1717.   Google Scholar

[25]

J. Turmo and J. E. Luco, Effect of hanger flexibility on dynamic response of suspension bridges,, J. Eng. Mech., 136 (2010), 1444.   Google Scholar

[26]

Q. Wu, K. Takahashi and S. Nakamura, The effect of cable loosening on seismic response of a prestressed concrete cable-stayed bridge,, J. of Sound and Vibration, 268 (2003), 71.   Google Scholar

[27]

Q. Wu, K. Takahashi and S. Nakamura, Non-linear vibrations of cables considering loosening,, J. of Sound and Vibration, 261 (2003), 385.   Google Scholar

show all references

References:
[1]

Ahmad M. Abdel-Ghaffar, Suspension bridge vibration: Continuum formulation,, Journal of Eng. Mech., 108 (1982), 1215.   Google Scholar

[2]

A. A. Abdel-Ghaffar and R. H. Scanlan, Ambient vibration studies of Golden Gate Bridge. Suspended structure,, Jour. Eng. Mech., 11 (1985), 463.   Google Scholar

[3]

N. U. Ahmed and H. Harbi, Mathematical analysis of dynamic models of suspension bridges,, SIAM J. Appl. Math., 58 (1998), 853.  doi: 10.1137/S0036139996308698.  Google Scholar

[4]

O. H. Ammann, T. von Karman and G. B. Woodruff, The Failure of the Tacoma Narrows Bridge,, Federal Works Agency, (1941).   Google Scholar

[5]

K. Y. Billah and R. H. Scanlan, Resonance, Tacoma Narrows bridge failure, and undergraduate physics textbooks,, Am. Jour. Physics, 59 (1991), 118.   Google Scholar

[6]

F. Bleich, C. B. McCullough, R. Rosecrans and G. S. Vincent, The Mathematical Theory of Suspension Bridges,, U.S. Dept. of Commerce, (1950).   Google Scholar

[7]

A. Castellani,, Safety margins of suspension bridges under seismic conditions,, J. Structural Eng., 113 (1987), 1600.   Google Scholar

[8]

Y. S. Choi, K. C. Jen and P. J. McKenna, The structure of the solution set for periodic oscillations in a suspension bridge model,, IMA J. Appl. Math, 47 (1991), 283.  doi: 10.1093/imamat/47.3.283.  Google Scholar

[9]

M. Diaferio and V. Sepe, Smoothed "slack cable" models for large amplitude oscillations of suspension bridges,, Mechanics Based Design of Structures and Machines, 32 (2004), 363.   Google Scholar

[10]

P. Drábek, H. Leinfelder and G. Tajčová, Coupled string-beam equations as a model of suspension bridges,, Appl. Math., 44 (1999), 97.  doi: 10.1023/A:1022257304738.  Google Scholar

[11]

P. Drábek and P. Nečesal, Nonlinear scalar model of a suspension bridge: existence of multiple periodic solutions,, Nonlinearity, 16 (2003), 1165.  doi: 10.1088/0951-7715/16/3/320.  Google Scholar

[12]

F. Gazzola and R. Pavani, Wide oscillation finite time blow up for solutions to nonlinear fourth order differential equations,, Arch. Ration. Mech. Anal., 207 (2013), 717.  doi: 10.1007/s00205-012-0569-5.  Google Scholar

[13]

J. Glover, A. C. Lazer and P. J. McKenna, Existence and stability of large-scale nonlinear oscillations in suspension bridges,, Z.A.M.P., 40 (1989), 171.  doi: 10.1007/BF00944997.  Google Scholar

[14]

D. Green and W. G. Unruh, The failure of the Tacoma Bridge: A physical model,, American J. Phys., 74 (2006), 706.  doi: 10.1119/1.2201854.  Google Scholar

[15]

A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis,, SIAM Rev., 32 (1990), 537.  doi: 10.1137/1032120.  Google Scholar

[16]

A. Larsen, Aerodynamics of the Tacoma Narrows Bridge-60 years later,, Structural Engineering International, 4 (2000), 243.   Google Scholar

[17]

P. J. McKenna, Large torsional oscillations in suspension bridges revisited: Fixing an old approximation,, Amer. Math. Monthly, 106 (1999), 1.  doi: 10.2307/2589581.  Google Scholar

[18]

P. J. McKenna and C. ÓTuama, Large torsional oscillations in suspension bridges visited again: Vertical forcing creates torsional response,, Amer. Math. Monthly, 108 (2001), 738.  doi: 10.2307/2695617.  Google Scholar

[19]

P. J. McKenna, Large-amplitude periodic oscillations in simple and complex mechanical systems: outgrowths from nonlinear analysis,, Milan J. Math, 74 (2006), 79.  doi: 10.1007/s00032-006-0052-6.  Google Scholar

[20]

P. J. McKenna and W. Walter, Nonlinear oscillations in a suspension bridge,, Arch. Rat. Mech. Anal., 98 (1987), 167.  doi: 10.1007/BF00251232.  Google Scholar

[21]

P. J. McKenna and W. Walter, Travelling waves in a suspension bridge,, SIAM J. of Applied Math, 50 (1990), 703.  doi: 10.1137/0150041.  Google Scholar

[22]

K. S. Moore, Large torsional oscillations in a suspension bridge: Multiple periodic solutions to a nonlinear wave equation,, SIAM J. Math. Anal., 33 (2002), 1411.  doi: 10.1137/S0036141001388099.  Google Scholar

[23]

R. H. Scanlan, Developments in low-speed aeroelasticity in the civil engineering field,, AIAA Journal, 20 (1982), 839.   Google Scholar

[24]

R. H. Scanlan and J. J. Tomko, Air foil and bridge deck flutter derivatives,, J. Eng. Mech. Division ASCE, 97 (1971), 1717.   Google Scholar

[25]

J. Turmo and J. E. Luco, Effect of hanger flexibility on dynamic response of suspension bridges,, J. Eng. Mech., 136 (2010), 1444.   Google Scholar

[26]

Q. Wu, K. Takahashi and S. Nakamura, The effect of cable loosening on seismic response of a prestressed concrete cable-stayed bridge,, J. of Sound and Vibration, 268 (2003), 71.   Google Scholar

[27]

Q. Wu, K. Takahashi and S. Nakamura, Non-linear vibrations of cables considering loosening,, J. of Sound and Vibration, 261 (2003), 385.   Google Scholar

[1]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[2]

Yi-Ming Tai, Zhengyang Zhang. Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021027

[3]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[4]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[5]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[6]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[7]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[8]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[9]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[10]

Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169

[11]

Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046

[12]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[13]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[14]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[15]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[16]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[17]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[18]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[19]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[20]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (143)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]