August  2014, 7(4): 793-805. doi: 10.3934/dcdss.2014.7.793

Asymptotic behaviour of sign changing radial solutions of Lane Emden Problems in the annulus

1. 

Dipartimento di Matematica, Università di Roma Sapienza, P.le A. Moro 2, 00185 Roma, Italy

2. 

Centro de Modelamiento Matemático, UMI 2807 CNRS-UChile, Universidad de Chile, Blanco Encalada 2120, Piso 7, Santiago, Chile

Received  July 2013 Revised  October 2013 Published  February 2014

We study the asymptotic behaviour as $p\rightarrow \infty$ of the nodal radial solutions $u_p$ of the problem \begin{equation*} \left\{ \begin{array}{rlll} -\Delta u&=&|u|^{p-1}u& \text{in }\Omega \\ u&=&0& \text{on }\partial\Omega, \end{array} \right. \end{equation*} where $\Omega$ is an annulus in $\mathbb{R}^N$, $N\geq 2$. We also analyze the spectrum of the linearized operator associated to $u_p$ in the case when $u_p$ has only two nodal regions. In particular, we prove that the Morse index of $u_p$ tends to $\infty$ as $p$ goes to $\infty$.
Citation: Filomena Pacella, Dora Salazar. Asymptotic behaviour of sign changing radial solutions of Lane Emden Problems in the annulus. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 793-805. doi: 10.3934/dcdss.2014.7.793
References:
[1]

Adimurthi and M. Grossi, Asymptotic estimates for a two-dimensional problem with polynomial nonlinearity,, Proc. Amer. Math. Soc., 132 (2004), 1013.  doi: 10.1090/S0002-9939-03-07301-5.  Google Scholar

[2]

T. Bartsch, M. Clapp, M. Grossi and F. Pacella, Asymptotically radial solutions in expanding annular domains,, Math. Ann., 352 (2012), 485.  doi: 10.1007/s00208-011-0646-3.  Google Scholar

[3]

T. Bartsch and T. Weth, A note on additional properties of sign changing solutions to superlinear elliptic equations,, Topol. Methods Nonlinear Anal., 22 (2003), 1.   Google Scholar

[4]

F. Dickstein, F. Pacella and B. Scunzi, Sign-changing stationary solutions and blowup for the nonlinear heat equation in dimension two, preprint,, , ().   Google Scholar

[5]

F. Gladiali, M. Grossi, F. Pacella and P. N. Srikanth, Bifurcation and symmetry breaking for a class of semilinear elliptic equations in an annulus,, Calc. Var. Partial Differential Equations, 40 (2011), 295.  doi: 10.1007/s00526-010-0341-3.  Google Scholar

[6]

M. Grossi, Asymptotic behaviour of the Kazdan-Warner solution in the annulus,, J. Differential Equations, 223 (2006), 96.  doi: 10.1016/j.jde.2005.08.003.  Google Scholar

[7]

M. Grossi, C. Grumiau and F. Pacella, Lane Emden problems with large exponents and singular Liouville equations,, to appear in J. Math. Pures Appl., ().   Google Scholar

[8]

W. M. Ni and R. D. Nussbaum, Uniqueness and nonuniqueness for positive radial solutions of $\Delta u+f(u,r)=0$,, Comm. Pure Appl. Math., 38 (1985), 67.  doi: 10.1002/cpa.3160380105.  Google Scholar

show all references

References:
[1]

Adimurthi and M. Grossi, Asymptotic estimates for a two-dimensional problem with polynomial nonlinearity,, Proc. Amer. Math. Soc., 132 (2004), 1013.  doi: 10.1090/S0002-9939-03-07301-5.  Google Scholar

[2]

T. Bartsch, M. Clapp, M. Grossi and F. Pacella, Asymptotically radial solutions in expanding annular domains,, Math. Ann., 352 (2012), 485.  doi: 10.1007/s00208-011-0646-3.  Google Scholar

[3]

T. Bartsch and T. Weth, A note on additional properties of sign changing solutions to superlinear elliptic equations,, Topol. Methods Nonlinear Anal., 22 (2003), 1.   Google Scholar

[4]

F. Dickstein, F. Pacella and B. Scunzi, Sign-changing stationary solutions and blowup for the nonlinear heat equation in dimension two, preprint,, , ().   Google Scholar

[5]

F. Gladiali, M. Grossi, F. Pacella and P. N. Srikanth, Bifurcation and symmetry breaking for a class of semilinear elliptic equations in an annulus,, Calc. Var. Partial Differential Equations, 40 (2011), 295.  doi: 10.1007/s00526-010-0341-3.  Google Scholar

[6]

M. Grossi, Asymptotic behaviour of the Kazdan-Warner solution in the annulus,, J. Differential Equations, 223 (2006), 96.  doi: 10.1016/j.jde.2005.08.003.  Google Scholar

[7]

M. Grossi, C. Grumiau and F. Pacella, Lane Emden problems with large exponents and singular Liouville equations,, to appear in J. Math. Pures Appl., ().   Google Scholar

[8]

W. M. Ni and R. D. Nussbaum, Uniqueness and nonuniqueness for positive radial solutions of $\Delta u+f(u,r)=0$,, Comm. Pure Appl. Math., 38 (1985), 67.  doi: 10.1002/cpa.3160380105.  Google Scholar

[1]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[2]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[3]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[4]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[5]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[6]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[7]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[8]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[9]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[10]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[11]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[12]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[13]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[14]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[15]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[16]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[17]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[18]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[19]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[20]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]