-
Previous Article
On an initial value problem modeling evolution and selection in living systems
- DCDS-S Home
- This Issue
-
Next Article
Oscillations in suspension bridges, vertical and torsional
Asymptotic behaviour of sign changing radial solutions of Lane Emden Problems in the annulus
1. | Dipartimento di Matematica, Università di Roma Sapienza, P.le A. Moro 2, 00185 Roma, Italy |
2. | Centro de Modelamiento Matemático, UMI 2807 CNRS-UChile, Universidad de Chile, Blanco Encalada 2120, Piso 7, Santiago, Chile |
References:
[1] |
Adimurthi and M. Grossi, Asymptotic estimates for a two-dimensional problem with polynomial nonlinearity, Proc. Amer. Math. Soc., 132 (2004), 1013-1019.
doi: 10.1090/S0002-9939-03-07301-5. |
[2] |
T. Bartsch, M. Clapp, M. Grossi and F. Pacella, Asymptotically radial solutions in expanding annular domains, Math. Ann., 352 (2012), 485-515.
doi: 10.1007/s00208-011-0646-3. |
[3] |
T. Bartsch and T. Weth, A note on additional properties of sign changing solutions to superlinear elliptic equations, Topol. Methods Nonlinear Anal., 22 (2003), 1-14. |
[4] |
F. Dickstein, F. Pacella and B. Scunzi, Sign-changing stationary solutions and blowup for the nonlinear heat equation in dimension two, preprint,, , ().
|
[5] |
F. Gladiali, M. Grossi, F. Pacella and P. N. Srikanth, Bifurcation and symmetry breaking for a class of semilinear elliptic equations in an annulus, Calc. Var. Partial Differential Equations, 40 (2011), 295-317.
doi: 10.1007/s00526-010-0341-3. |
[6] |
M. Grossi, Asymptotic behaviour of the Kazdan-Warner solution in the annulus, J. Differential Equations, 223 (2006), 96-111.
doi: 10.1016/j.jde.2005.08.003. |
[7] |
M. Grossi, C. Grumiau and F. Pacella, Lane Emden problems with large exponents and singular Liouville equations,, to appear in J. Math. Pures Appl., ().
|
[8] |
W. M. Ni and R. D. Nussbaum, Uniqueness and nonuniqueness for positive radial solutions of $\Delta u+f(u,r)=0$, Comm. Pure Appl. Math., 38 (1985), 67-108.
doi: 10.1002/cpa.3160380105. |
show all references
References:
[1] |
Adimurthi and M. Grossi, Asymptotic estimates for a two-dimensional problem with polynomial nonlinearity, Proc. Amer. Math. Soc., 132 (2004), 1013-1019.
doi: 10.1090/S0002-9939-03-07301-5. |
[2] |
T. Bartsch, M. Clapp, M. Grossi and F. Pacella, Asymptotically radial solutions in expanding annular domains, Math. Ann., 352 (2012), 485-515.
doi: 10.1007/s00208-011-0646-3. |
[3] |
T. Bartsch and T. Weth, A note on additional properties of sign changing solutions to superlinear elliptic equations, Topol. Methods Nonlinear Anal., 22 (2003), 1-14. |
[4] |
F. Dickstein, F. Pacella and B. Scunzi, Sign-changing stationary solutions and blowup for the nonlinear heat equation in dimension two, preprint,, , ().
|
[5] |
F. Gladiali, M. Grossi, F. Pacella and P. N. Srikanth, Bifurcation and symmetry breaking for a class of semilinear elliptic equations in an annulus, Calc. Var. Partial Differential Equations, 40 (2011), 295-317.
doi: 10.1007/s00526-010-0341-3. |
[6] |
M. Grossi, Asymptotic behaviour of the Kazdan-Warner solution in the annulus, J. Differential Equations, 223 (2006), 96-111.
doi: 10.1016/j.jde.2005.08.003. |
[7] |
M. Grossi, C. Grumiau and F. Pacella, Lane Emden problems with large exponents and singular Liouville equations,, to appear in J. Math. Pures Appl., ().
|
[8] |
W. M. Ni and R. D. Nussbaum, Uniqueness and nonuniqueness for positive radial solutions of $\Delta u+f(u,r)=0$, Comm. Pure Appl. Math., 38 (1985), 67-108.
doi: 10.1002/cpa.3160380105. |
[1] |
Salomón Alarcón, Jinggang Tan. Sign-changing solutions for some nonhomogeneous nonlocal critical elliptic problems. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5825-5846. doi: 10.3934/dcds.2019256 |
[2] |
Chia-Yu Hsieh. Stability of radial solutions of the Poisson-Nernst-Planck system in annular domains. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2657-2681. doi: 10.3934/dcdsb.2018269 |
[3] |
Weiwei Ao, Chao Liu. Asymptotic behavior of sign-changing radial solutions of a semilinear elliptic equation in $ \mathbb{R}^2 $ when exponent approaches $ +\infty $. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 5047-5077. doi: 10.3934/dcds.2020211 |
[4] |
M. Gaudenzi, P. Habets, F. Zanolin. Positive solutions of superlinear boundary value problems with singular indefinite weight. Communications on Pure and Applied Analysis, 2003, 2 (3) : 411-423. doi: 10.3934/cpaa.2003.2.411 |
[5] |
Dagny Butler, Eunkyung Ko, Eun Kyoung Lee, R. Shivaji. Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2713-2731. doi: 10.3934/cpaa.2014.13.2713 |
[6] |
Riccardo Molle, Donato Passaseo. On the behaviour of the solutions for a class of nonlinear elliptic problems in exterior domains. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 445-454. doi: 10.3934/dcds.1998.4.445 |
[7] |
Monica Musso, A. Pistoia. Sign changing solutions to a Bahri-Coron's problem in pierced domains. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 295-306. doi: 10.3934/dcds.2008.21.295 |
[8] |
Gabriele Cora, Alessandro Iacopetti. Sign-changing bubble-tower solutions to fractional semilinear elliptic problems. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 6149-6173. doi: 10.3934/dcds.2019268 |
[9] |
Yanfang Peng, Jing Yang. Sign-changing solutions to elliptic problems with two critical Sobolev-Hardy exponents. Communications on Pure and Applied Analysis, 2015, 14 (2) : 439-455. doi: 10.3934/cpaa.2015.14.439 |
[10] |
Trad Alotaibi, D. D. Hai, R. Shivaji. Existence and nonexistence of positive radial solutions for a class of $p$-Laplacian superlinear problems with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4655-4666. doi: 10.3934/cpaa.2020131 |
[11] |
Maria Rosaria Lancia, Paola Vernole. The Stokes problem in fractal domains: Asymptotic behaviour of the solutions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1553-1565. doi: 10.3934/dcdss.2020088 |
[12] |
Yohei Sato, Zhi-Qiang Wang. On the least energy sign-changing solutions for a nonlinear elliptic system. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2151-2164. doi: 10.3934/dcds.2015.35.2151 |
[13] |
Aixia Qian, Shujie Li. Multiple sign-changing solutions of an elliptic eigenvalue problem. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 737-746. doi: 10.3934/dcds.2005.12.737 |
[14] |
Yuxin Ge, Monica Musso, A. Pistoia, Daniel Pollack. A refined result on sign changing solutions for a critical elliptic problem. Communications on Pure and Applied Analysis, 2013, 12 (1) : 125-155. doi: 10.3934/cpaa.2013.12.125 |
[15] |
A. El Hamidi. Multiple solutions with changing sign energy to a nonlinear elliptic equation. Communications on Pure and Applied Analysis, 2004, 3 (2) : 253-265. doi: 10.3934/cpaa.2004.3.253 |
[16] |
Norimichi Hirano, A. M. Micheletti, A. Pistoia. Existence of sign changing solutions for some critical problems on $\mathbb R^N$. Communications on Pure and Applied Analysis, 2005, 4 (1) : 143-164. doi: 10.3934/cpaa.2005.4.143 |
[17] |
Patricio Cerda, Leonelo Iturriaga, Sebastián Lorca, Pedro Ubilla. Positive radial solutions of a nonlinear boundary value problem. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1765-1783. doi: 10.3934/cpaa.2018084 |
[18] |
Jincai Kang, Chunlei Tang. Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5239-5252. doi: 10.3934/cpaa.2020235 |
[19] |
Shujie Li, Zhitao Zhang. Multiple solutions theorems for semilinear elliptic boundary value problems with resonance at infinity. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 489-493. doi: 10.3934/dcds.1999.5.489 |
[20] |
Guglielmo Feltrin. Existence of positive solutions of a superlinear boundary value problem with indefinite weight. Conference Publications, 2015, 2015 (special) : 436-445. doi: 10.3934/proc.2015.0436 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]