\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Positivity for the Navier bilaplace, an anti-eigenvalue and an expected lifetime

Abstract Related Papers Cited by
  • We address the question, for which $\lambda \in \mathbb{R}$ is the boundary value problem \begin{equation*} \left\{ \begin{array}{cc} \Delta ^{2}u+\lambda u=f & \text{in }\Omega , \\ u=\Delta u=0 & \text{on }\partial \Omega , \end{array} \right. \end{equation*} positivity preserving, that is, $f\geq 0$ implies $u\geq 0$. Moreover, we consider what happens, when $\lambda $ passes the maximal value for which positivity is preserved.
    Mathematics Subject Classification: Primary: 35J40; Secondary: 35B50, 60J85.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Bañuelos and T. Carroll, Extremal problems for conditioned Brownian motion and the hyperbolic metric, Ann. Inst. Fourier (Grenoble), 50 (2000), 1507-1532.doi: 10.5802/aif.1798.

    [2]

    R. F. Bass, J. Horák and P. J. McKenna, On the lift-off constant for elastically supported plates, Proc. Amer. Math. Soc., 132 (2004), 2951-2958.doi: 10.1090/S0002-9939-04-07428-3.

    [3]

    G. Caristi and E. Mitidieri, Further results on maximum principles for noncooperative elliptic systems, Nonlinear Anal., 17 (1991), 547-558.doi: 10.1016/0362-546X(91)90063-7.

    [4]

    K. L. Chung and Z. X. Zhao, From Brownian Motion to Schrödinger's Equation, Grundlehren der Mathematischen Wissenschaften, 312, Springer-Verlag, Berlin, 1995.doi: 10.1007/978-3-642-57856-4.

    [5]

    M. Cranston, E. Fabes and Z. X. Zhao, Conditional gauge and potential theory for the Schrödinger operator, Trans. Amer. Math. Soc., 307 (1988), 171-194.doi: 10.2307/2000757.

    [6]

    B. Dittmar, Local and global maxima for the expectation of the lifetime of a Brownian motion on the disk, J. Anal. Math., 104 (2008), 59-68.doi: 10.1007/s11854-008-0016-6.

    [7]

    J. L. Doob, Classical Potential Theory and Its Probabilistic Counterpart, Grundlehren der Mathematischen Wissenschaften, 262, Springer-Verlag, New York, 1984.doi: 10.1007/978-1-4612-5208-5.

    [8]

    A. Dall'Acqua, H.-Ch. Grunau and G. Sweers, On a conditioned Brownian motion and a maximum principle on the disk, J. Anal. Math., 93 (2004), 309-329.doi: 10.1007/BF02789311.

    [9]

    A. Dall'Acqua, On the lifetime of a conditional Brownian motion in the ball, J. Math. Anal. Appl., 335 (2007), 389-405.doi: 10.1016/j.jmaa.2007.01.081.

    [10]

    M. Erven and G. Sweers, On the lifetime of a conditioned Brownian motion on a fish bowl, Arch. Math. (Basel), 90 (2008), 87-96.doi: 10.1007/s00013-007-2387-9.

    [11]

    M. Erven and G. Sweers, On the lifetime of conditioned Brownian motion in domains connected through small gaps, submitted.

    [12]

    M. Erven and G. Sweers, On the location of the maximal lifetime for a conditional Brownian motion, in preparation.

    [13]

    L. E. Fraenkel, An Introduction to Maximum Principles and Symmetry in Elliptic Problems, Cambridge Tracts in Mathematics, 128, Cambridge University Press, Cambridge, 2000.doi: 10.1017/CBO9780511569203.

    [14]

    Ph. Griffin, T. McConnell and G. Verchota, Conditioned Brownian motion in simply connected planar domains, Ann. Inst. H. Poincaré Probab. Statist, 29 (1993), 229-249.

    [15]

    H.-Ch. Grunau and G. Sweers, Positivity for equations involving polyharmonic elliptic operators with Dirichlet boundary conditions, Math. Ann., 307 (1997), 589-626.doi: 10.1007/s002080050052.

    [16]

    H.-Ch. Grunau and G. Sweers, The maximum principle and positive principal eigenfunctions for polyharmonic equations, in Reaction Diffusion systems, Marcel Dekker Inc., New York, 1997, 163-182.

    [17]

    H.-Ch. Grunau and G. Sweers, Sharp estimates for iterated Green functions, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 91-120.doi: 10.1017/S0308210500001542.

    [18]

    B. Kawohl and G. Sweers, On ‘anti'-eigenvalues for elliptic systems and a question of McKenna and Walter, Indiana Univ. Math. J., 51 (2002), 1023-1040.doi: 10.1512/iumj.2002.51.2275.

    [19]

    B. Kawohl and G. Sweers, Among all two-dimensional convex domains the disk is not optimal for the lifetime of a conditioned Brownian motion, J. Anal. Math., 86 (2002), 335-357.doi: 10.1007/BF02786655.

    [20]

    P. J. McKenna and W. Walter, Nonlinear oscillations in a suspension bridge, Arch. Rational Mech. Anal., 98 (1987), 167-177.doi: 10.1007/BF00251232.

    [21]

    E. Mitidieri and G. Sweers, Weakly coupled elliptic systems and positivity, Math. Nachr., 173 (1995), 259-286.doi: 10.1002/mana.19951730115.

    [22]

    S. A. Nazarov and G. Sweers, A hinged plate equation and iterated Dirichlet Laplace operator on domains with concave corners, J. Differential Equations, 233 (2007), 151-180.doi: 10.1016/j.jde.2006.09.018.

    [23]

    M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Corrected reprint of the 1967 original, Springer-Verlag, New York, 1984.doi: 10.1007/978-1-4612-5282-5.

    [24]

    P. Pucci and J. Serrin, The Maximum Principle, Progress in Nonlinear Differential Equations and their Applications, 73, Birkhäuser Verlag, Basel, 2007.

    [25]

    J. Schröder, Zusammenhängende Mengen inverspositiver Differentialoperatoren vierter Ordnung, Math. Z., 96 (1967), 89-110.doi: 10.1007/BF01111581.

    [26]

    J. Schröder, Operator Inequalities, Mathematics in Science and Engineering, 147, Academic Press Inc., New York-London, 1980.

    [27]

    G. Sweers, A strong maximum principle for a noncooperative elliptic system, SIAM J. Math. Anal., 20 (1989), 367-371.doi: 10.1137/0520023.

    [28]

    G. Sweers, Strong positivity in $C$ $( \bar{\Omega}) $ for elliptic systems, Math. Z., 209 (1992), 251-271.doi: 10.1007/BF02570833.

    [29]

    G. Sweers, Positivity for a strongly coupled elliptic system by Green function estimates, J. Geom. Anal., 4 (1994), 121-142.doi: 10.1007/BF02921596.

    [30]

    M. Ulm, The interval of resolvent-positivity for the biharmonic operator, Proc. A.M.S., 127 (1999), 481-489.doi: 10.1090/S0002-9939-99-04556-6.

    [31]

    M. van den Berg, A. Dall'Acqua and G. Sweers, Estimates for the expected lifetime of conditioned Brownian motion, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 1091-1099.doi: 10.1017/S0308210506000448.

    [32]

    Z. X. Zhao, Uniform boundedness of conditional gauge and Schrödinger equations, Comm. Math. Phys., 93 (1984), 19-31.doi: 10.1007/BF01218637.

    [33]

    Z. X. Zhao, Green function for Schrödinger operator and conditioned Feynman-Kac gauge, J. Math. Anal. Appl., 116 (1986), 309-334.doi: 10.1016/S0022-247X(86)80001-4.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(136) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return