Citation: |
[1] |
R. Bañuelos and T. Carroll, Extremal problems for conditioned Brownian motion and the hyperbolic metric, Ann. Inst. Fourier (Grenoble), 50 (2000), 1507-1532.doi: 10.5802/aif.1798. |
[2] |
R. F. Bass, J. Horák and P. J. McKenna, On the lift-off constant for elastically supported plates, Proc. Amer. Math. Soc., 132 (2004), 2951-2958.doi: 10.1090/S0002-9939-04-07428-3. |
[3] |
G. Caristi and E. Mitidieri, Further results on maximum principles for noncooperative elliptic systems, Nonlinear Anal., 17 (1991), 547-558.doi: 10.1016/0362-546X(91)90063-7. |
[4] |
K. L. Chung and Z. X. Zhao, From Brownian Motion to Schrödinger's Equation, Grundlehren der Mathematischen Wissenschaften, 312, Springer-Verlag, Berlin, 1995.doi: 10.1007/978-3-642-57856-4. |
[5] |
M. Cranston, E. Fabes and Z. X. Zhao, Conditional gauge and potential theory for the Schrödinger operator, Trans. Amer. Math. Soc., 307 (1988), 171-194.doi: 10.2307/2000757. |
[6] |
B. Dittmar, Local and global maxima for the expectation of the lifetime of a Brownian motion on the disk, J. Anal. Math., 104 (2008), 59-68.doi: 10.1007/s11854-008-0016-6. |
[7] |
J. L. Doob, Classical Potential Theory and Its Probabilistic Counterpart, Grundlehren der Mathematischen Wissenschaften, 262, Springer-Verlag, New York, 1984.doi: 10.1007/978-1-4612-5208-5. |
[8] |
A. Dall'Acqua, H.-Ch. Grunau and G. Sweers, On a conditioned Brownian motion and a maximum principle on the disk, J. Anal. Math., 93 (2004), 309-329.doi: 10.1007/BF02789311. |
[9] |
A. Dall'Acqua, On the lifetime of a conditional Brownian motion in the ball, J. Math. Anal. Appl., 335 (2007), 389-405.doi: 10.1016/j.jmaa.2007.01.081. |
[10] |
M. Erven and G. Sweers, On the lifetime of a conditioned Brownian motion on a fish bowl, Arch. Math. (Basel), 90 (2008), 87-96.doi: 10.1007/s00013-007-2387-9. |
[11] |
M. Erven and G. Sweers, On the lifetime of conditioned Brownian motion in domains connected through small gaps, submitted. |
[12] |
M. Erven and G. Sweers, On the location of the maximal lifetime for a conditional Brownian motion, in preparation. |
[13] |
L. E. Fraenkel, An Introduction to Maximum Principles and Symmetry in Elliptic Problems, Cambridge Tracts in Mathematics, 128, Cambridge University Press, Cambridge, 2000.doi: 10.1017/CBO9780511569203. |
[14] |
Ph. Griffin, T. McConnell and G. Verchota, Conditioned Brownian motion in simply connected planar domains, Ann. Inst. H. Poincaré Probab. Statist, 29 (1993), 229-249. |
[15] |
H.-Ch. Grunau and G. Sweers, Positivity for equations involving polyharmonic elliptic operators with Dirichlet boundary conditions, Math. Ann., 307 (1997), 589-626.doi: 10.1007/s002080050052. |
[16] |
H.-Ch. Grunau and G. Sweers, The maximum principle and positive principal eigenfunctions for polyharmonic equations, in Reaction Diffusion systems, Marcel Dekker Inc., New York, 1997, 163-182. |
[17] |
H.-Ch. Grunau and G. Sweers, Sharp estimates for iterated Green functions, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 91-120.doi: 10.1017/S0308210500001542. |
[18] |
B. Kawohl and G. Sweers, On ‘anti'-eigenvalues for elliptic systems and a question of McKenna and Walter, Indiana Univ. Math. J., 51 (2002), 1023-1040.doi: 10.1512/iumj.2002.51.2275. |
[19] |
B. Kawohl and G. Sweers, Among all two-dimensional convex domains the disk is not optimal for the lifetime of a conditioned Brownian motion, J. Anal. Math., 86 (2002), 335-357.doi: 10.1007/BF02786655. |
[20] |
P. J. McKenna and W. Walter, Nonlinear oscillations in a suspension bridge, Arch. Rational Mech. Anal., 98 (1987), 167-177.doi: 10.1007/BF00251232. |
[21] |
E. Mitidieri and G. Sweers, Weakly coupled elliptic systems and positivity, Math. Nachr., 173 (1995), 259-286.doi: 10.1002/mana.19951730115. |
[22] |
S. A. Nazarov and G. Sweers, A hinged plate equation and iterated Dirichlet Laplace operator on domains with concave corners, J. Differential Equations, 233 (2007), 151-180.doi: 10.1016/j.jde.2006.09.018. |
[23] |
M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Corrected reprint of the 1967 original, Springer-Verlag, New York, 1984.doi: 10.1007/978-1-4612-5282-5. |
[24] |
P. Pucci and J. Serrin, The Maximum Principle, Progress in Nonlinear Differential Equations and their Applications, 73, Birkhäuser Verlag, Basel, 2007. |
[25] |
J. Schröder, Zusammenhängende Mengen inverspositiver Differentialoperatoren vierter Ordnung, Math. Z., 96 (1967), 89-110.doi: 10.1007/BF01111581. |
[26] |
J. Schröder, Operator Inequalities, Mathematics in Science and Engineering, 147, Academic Press Inc., New York-London, 1980. |
[27] |
G. Sweers, A strong maximum principle for a noncooperative elliptic system, SIAM J. Math. Anal., 20 (1989), 367-371.doi: 10.1137/0520023. |
[28] |
G. Sweers, Strong positivity in $C$ $( \bar{\Omega}) $ for elliptic systems, Math. Z., 209 (1992), 251-271.doi: 10.1007/BF02570833. |
[29] |
G. Sweers, Positivity for a strongly coupled elliptic system by Green function estimates, J. Geom. Anal., 4 (1994), 121-142.doi: 10.1007/BF02921596. |
[30] |
M. Ulm, The interval of resolvent-positivity for the biharmonic operator, Proc. A.M.S., 127 (1999), 481-489.doi: 10.1090/S0002-9939-99-04556-6. |
[31] |
M. van den Berg, A. Dall'Acqua and G. Sweers, Estimates for the expected lifetime of conditioned Brownian motion, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 1091-1099.doi: 10.1017/S0308210506000448. |
[32] |
Z. X. Zhao, Uniform boundedness of conditional gauge and Schrödinger equations, Comm. Math. Phys., 93 (1984), 19-31.doi: 10.1007/BF01218637. |
[33] |
Z. X. Zhao, Green function for Schrödinger operator and conditioned Feynman-Kac gauge, J. Math. Anal. Appl., 116 (1986), 309-334.doi: 10.1016/S0022-247X(86)80001-4. |