Citation: |
[1] |
N. Alibaud, S. Cifani and E. Jakobsen, Continuous dependence estimates for nonlinear fractional convection-diffusion equations, SIAM J. Math. Anal., 44 (2012), 603-632.doi: 10.1137/110834342. |
[2] |
N. Alibaud, S. Cifani and E. Jakobsen, Optimal continuous dependence estimates for fractional degenerate parabolic equations, arXiv:1307.1218. |
[3] |
L. Ambrosio, E. Mainini and S. Serfaty, Gradient flow of the Chapman-Rubinstein-Schatzman model for signed vortices, Annales IHP, Analyse non linéaire, 28 (2011), 217-246.doi: 10.1016/j.anihpc.2010.11.006. |
[4] |
L. Ambrosio and S. Serfaty, A gradient flow approach to an evolution problem arising in superconductivity, Comm. Pure Appl. Math., 61 (2008), 1495-1539.doi: 10.1002/cpa.20223. |
[5] |
F. Andreu, J. M. Mazón, J. D. Rossi and J. Toledo, Nonlocal Diffusion Problems, AMS Mathematical Surveys and Monographs, 165, 2010. |
[6] |
D. Applebaum, Lévy Processes and Stochastic Calculus, Second edition, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009.doi: 10.1017/CBO9780511809781. |
[7] |
D. G. Aronson, The porous medium equation, in Nonlinear Diffusion Problems (Montecatini Terme, 1985), Lecture Notes in Math., 1224, Springer, Berlin, 1986, 1-46.doi: 10.1007/BFb0072687. |
[8] |
D. G. Aronson and L. A. Caffarelli, The initial trace of a solution of the porous medium equation, Trans. Amer. Math. Soc., 280 (1983), 351-366.doi: 10.1090/S0002-9947-1983-0712265-1. |
[9] |
D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. in Math., 30 (1978), 33-76.doi: 10.1016/0001-8708(78)90130-5. |
[10] |
I. Athanasopoulos and L. A. Caffarelli, Optimal regularity of lower dimensional obstacle problems, Zap. Nauchn. Se. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 310 (2004), Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts, 35 [34], 49-66, 226; translation in J. Math. Sci. (N. Y.), 132 (2006), 274-284.doi: 10.1007/s10958-005-0496-1. |
[11] |
I. Athanasopoulos and L. A. Caffarelli, Continuity of the temperature in boundary heat control problem, Advances in Mathematics, 224 (2010), 293-315.doi: 10.1016/j.aim.2009.11.010. |
[12] |
T. Aubin, Problemes isoprimtriques et espaces de Sobolev, J. Diff. Geom., 11 (1976), 573-598. |
[13] |
C. Bandle, Isoperimetric Inequalities and Applications, Monographs and Studies in Mathematics, 7, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1980. |
[14] |
G. I. Barenblatt, On some unsteady motions of a liquid or a gas in a porous medium, (in Russian) Prikl. Mat. Mekh., 16 (1952), 67-78. |
[15] |
G. I. Barenblatt, Scaling, Self-Similarity, and Intermediate Asymptotics, Cambridge Texts in Applied Mathematics, 14, Cambridge University Press, Cambridge, 1996. |
[16] |
J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics, 121, Cambridge University Press, Cambridge, 1996. |
[17] |
A. L. Bertozzi, J. L. Carrillo and T. Laurent, Blow-up in multidimensional aggregation equations with mildly singular interaction kernels, Nonlinearity, 22 (2009), 683-710.doi: 10.1088/0951-7715/22/3/009. |
[18] |
A. Bertozzi, T. Laurent and F. Léger, Aggregation via Newtonian Potential and Aggregation Patches, M3AS, 22 (2012), 1140005, 39 pp. |
[19] |
P. Biler, C. Imbert and G. Karch, Barenblatt profiles for a nonlocal porous medium equation, Comptes Rendus Mathematique, 349(2011), 641-645.doi: 10.1016/j.crma.2011.06.003. |
[20] |
P. Biler, C. Imbert and G. Karch, Nonlocal porous medium equation: Barenblatt profiles and other weak solutions, preprint arXiv:1302.7219, (2013). |
[21] |
P. Biler, G. Karch and R. Monneau, Nonlinear diffusion of dislocation density and self-similar solutions, Comm. Math. Phys., 294 (2010), 145-168.doi: 10.1007/s00220-009-0855-8. |
[22] |
R. M. Blumenthal and R. K Getoor, Some theorems on stable processes, Trans. Amer. Math. Soc., 95 (1960), 263-273.doi: 10.1090/S0002-9947-1960-0119247-6. |
[23] |
M. Bologna, P. Grigolini and C. Tsallis, Anomalous diffusion associated with nonlinear fractional derivative Fokker-Planck-like equation: Exact time-dependent solutions, Physical Review E, 62 (2000).doi: 10.1103/PhysRevE.62.2213. |
[24] |
M. Bonforte and J. L. Vázquez, Global positivity estimates and Harnack inequalities for the fast diffusion equation, J. Funct. Anal., 240 (2006), 399-428.doi: 10.1016/j.jfa.2006.07.009. |
[25] |
M. Bonforte and J. L. Vázquez, Positivity, local smoothing, and Harnack inequalities for very fast diffusion equations, Advances in Math., 223 (2010), 529-578.doi: 10.1016/j.aim.2009.08.021. |
[26] |
M. Bonforte, J. Dolbeault, G. Grillo and J. L. Vázquez, Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities, Proceedings Natl. Acad. Sci. USA, 107 (2010), 16459-16464.doi: 10.1073/pnas.1003972107. |
[27] |
M. Bonforte and J. L. Vázquez, Quantitative local and global a priori estimates for fractional nonlinear diffusion equations, Advances in Math., 250 (2014), 242-284.doi: 10.1016/j.aim.2013.09.018. |
[28] |
M. Bonforte and J. L. Vázquez, A priori estimates for fractional nonlinear degenerate diffusion equations on bounded domains, preprint arXiv:1311.6997. |
[29] |
M. Bonforte and J. L. Vázquez, A priori estimates for fractional nonlinear degenerate diffusion equations on bounded domains. Part II, in preparation. |
[30] |
J. Bourgain, H. Brezis and P. Mironescu, Limiting embedding theorems for $W^{s,p}$ when $s\to 1$ and applications, J. Anal. Math., 87 (2002), 77-101 |
[31] |
X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. in Math., 224 (2010), 2052-2093.doi: 10.1016/j.aim.2010.01.025. |
[32] |
X. Cabré and J. M. Roquejoffre, Propagation de fronts dans les équations de Fisher-KPP avec diffusion fractionnaire, C. R. Math. Acad. Sci. Paris, 347 (2009), 1361-1366.doi: 10.1016/j.crma.2009.10.012. |
[33] |
X. Cabré and J. M. Roquejoffre, The influence of fractional diffusion in Fisher-KPP equations, Comm. Math. Phys., 320 (2013), 679-722.doi: 10.1007/s00220-013-1682-5. |
[34] |
L. A. Caffarelli, Further regularity for the Signorini problem, Comm. Partial Differential Equations, 4 (1979), 1067-1075.doi: 10.1080/03605307908820119. |
[35] |
L. Caffarelli, C.-H. Chan and A. Vasseur, Regularity theory for nonlinear integral operators, J. Amer. Math. Soc., 24 (2011), 849-869.doi: 10.1090/S0894-0347-2011-00698-X. |
[36] |
L. A. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary to the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008), 425-461.doi: 10.1007/s00222-007-0086-6. |
[37] |
L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.doi: 10.1080/03605300600987306. |
[38] |
L. A. Caffarelli, F. Soria and J. L. Vázquez, Regularity of solutions of the fractional porous medium flow, J. Eur. Math. Soc. (JEMS), 15 (2013), 1701-1746.doi: 10.4171/JEMS/401. |
[39] |
L. A. Caffarelli and J. L. Vázquez, Nonlinear porous medium flow with fractional potential pressure, Arch. Rational Mech. Anal., 202 (2011), 537-565.doi: 10.1007/s00205-011-0420-4. |
[40] |
L. A. Caffarelli and J. L. Vázquez, Asymptotic behaviour of a porous medium equation with fractional diffusion, Discrete Cont. Dyn. Systems-A, 29 (2011), 1393-1404. |
[41] |
L. A. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., 171 (2010), 1903-1930.doi: 10.4007/annals.2010.171.1903. |
[42] |
A. Capella, J. Davila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non local semilinear equations, Comm. Partial Diff. Eq., 36 (2011), 1353-1384.doi: 10.1080/03605302.2011.562954. |
[43] |
J. A. Carrillo, Y. Huang and J. L. Vazquez, in preparation. |
[44] |
Z. Q. Chen, P. Kim and R. Song, Heat kernel estimates for the Dirichlet fractional Laplacian, J. Eur. Math. Soc. (JEMS), 12 (2010), 1307-1329.doi: 10.4171/JEMS/231. |
[45] |
S. Cifani and E. R. Jakobsen, Entropy solution theory for fractional degenerate convection-diffusion equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 413-441.doi: 10.1016/j.anihpc.2011.02.006. |
[46] |
S. Cifani, E. R. Jakobsen and K. H. Karlsen, The discontinuous Galerkin method for fractional degenerate convection-diffusion equations, BIT, 51 (2011), 809-844.doi: 10.1007/s10543-011-0327-3. |
[47] |
J. S. Chapman, J. Rubinstein and M. Schatzman, A mean-field model for superconducting vortices, Eur. J. Appl. Math., 7 (1996), 97-111.doi: 10.1017/S0956792500002242. |
[48] |
R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC, 2004. |
[49] |
E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Tracts in Mathematics, 92, Cambridge University Press, Cambridge, 1990. |
[50] |
A. de Pablo and J. L. Vázquez, Travelling waves and finite propagation in a reaction-diffusion equation, J. Differential Equations, 93 (1991), 19-61.doi: 10.1016/0022-0396(91)90021-Z. |
[51] |
A. De Pablo, F. Quirós, A. Rodríguez and J. L. Vázquez, A fractional porous medium equation, Advances in Mathematics, 226 (2011), 1378-1409.doi: 10.1016/j.aim.2010.07.017. |
[52] |
A. De Pablo, F. Quirós, A. Rodríguez and J. L. Vázquez, A general fractional porous medium equation, Comm. Pure Appl. Math., 65 (2012), 1242-1284.doi: 10.1002/cpa.21408. |
[53] |
A. de Pablo, F. Quirós, A. Rodríguez and J. L. Vázquez, Classical solutions for a logarithmic fractional diffusion equation, to appear in Journal de Math. Pures Appliquées, arXiv:1205.2223v2. |
[54] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional sobolev spaces, preprint, (2011). |
[55] |
G. Duvaut and J.-L. Lions, Les Inéquations en Mechanique et en Physique, Travaux et Recherches Mathématiques, No. 21, Dunod, Paris, 1972. |
[56] |
W. E, Dynamics of vortex-liquids in Ginzburg-Landau theories with applications to superconductivity, Phys. Rev. B, 50 (1994), 1126-1135. |
[57] |
R. A. Fisher, The wave of advance of advantagenous genes, Ann. Eugenics, 7 (1937), 355-369. |
[58] |
R. K. Getoor, First passage times for symmetric stable processes in space, Trans. Amer. Math. Soc., 101 (1961), 75-90.doi: 10.1090/S0002-9947-1961-0137148-5. |
[59] |
A. K. Head, Dislocation group dynamics II. Similarity solutions of the continuum approximation, Phil. Mag., 26 (1972), 65-72. |
[60] |
Y. H. Huang, Explicit barenblatt profiles for fractional porous medium equations, preprint, (2013). |
[61] |
M. D. Jara, Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps, Comm. Pure Applied Math., 62 (2009), 198-214.doi: 10.1002/cpa.20253. |
[62] |
M. D. Jara, T. Komorowski and S. Olla, Limit theorems for additive functionals of a Markov chain, Ann. Appl. Probab., 19 (2009), 2270-2300.doi: 10.1214/09-AAP610. |
[63] |
M. Jara, Hydrodynamic limit Of particle systems with long jumps, arXiv:0805.1326v2 |
[64] |
M. Jara, C. Landim and S. Sethuraman, Nonequilibrium fluctuations for a tagged particle in mean-zero one-dimensional zero-range processes, Probab. Theory Relat. Fields, 145 (2009), 565-590.doi: 10.1007/s00440-008-0178-2. |
[65] |
M. Kassmann, A priori estimates for integro-differential operators with measurable kernels, Calc. Var., 34 (2009), 1-21.doi: 10.1007/s00526-008-0173-6. |
[66] |
J. King and P. McCabe, On the Fisher-KPP equation with fast nonlinear diffusion, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 2529-2546.doi: 10.1098/rspa.2003.1134. |
[67] |
A. Kiselev, F. Nazarov and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math., 167 (2007), 445-453.doi: 10.1007/s00222-006-0020-3. |
[68] |
A. N. Kolmogorov, I. G. Petrovskii and N. S. Piskunov, Etude de l'équation de diffusion avec accroissement de la quantité de matière, et son application à un problème biologique, Bjul. Moskowskogo Gos. Univ., 17 (1937), 1-26. |
[69] |
N. S. Landkof, Foundations of Modern Potential Theory, Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer, New York, 1972. |
[70] |
E. K. Lenzi, R. S. Mendes and C. Tsallis, Crossover in diffusion equation: Anomalous and normal behaviors, Physical Review E, 67 (2003), 031104.doi: 10.1103/PhysRevE.67.031104. |
[71] |
F. H. Lin and P. Zhang, On the hydrodynamic limit of Ginzburg-Landau vortices, Discrete Cont. Dyn. Systems, 6 (2000), 121-142.doi: 10.3934/dcds.2000.6.121. |
[72] |
V. I. Mazya and T. O. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, Journal Funct. Anal., 195 (2002), 230-238.doi: 10.1006/jfan.2002.3955. |
[73] |
A. Mellet, S. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations, Arch. Ration. Mech. Anal., 199 (2011), 493-525.doi: 10.1007/s00205-010-0354-2. |
[74] |
R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Physics Reports, 339 (2000), 1-77.doi: 10.1016/S0370-1573(00)00070-3. |
[75] |
R. H. Nochetto, E. Otarola and A. J. Salgado, A PDE approach to fractional diffusion in general domains: A priori error analysis, arXiv:1302.0698 |
[76] |
S. Serfaty and J. L. Vazquez, A mean field equation as limit of nonlinear diffusion with fractional laplacian operators, Calc. Var. PDEs, online, arXiv:1205.632229, (2013).doi: 10.1007/s00526-013-0613-9. |
[77] |
R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, to appear in Proc. Roy. Soc. Edinburgh Sect. A. Available from: http://www.ma.utexas.edu/mp_arc/c/12/12-123.pdf. |
[78] |
A. Signorini, Questioni di elasticità non linearizzata e semilinearizzata, Rendiconti di Matematica e delle sue Applicazioni, 18 (1959), 95-139. |
[79] |
L. E. Silvestre, Hölder estimates for solutions of integro differential equations like the fractional Laplace, Indiana Univ. Math. J., 55 (2006), 1155-1174.doi: 10.1512/iumj.2006.55.2706. |
[80] |
L. E. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 6-112.doi: 10.1002/cpa.20153. |
[81] |
D. Stan and J. L. Vázquez, The Fisher-KPP equation with nonlinear fractional diffusion, submitted, arXiv:1303.6823, (2013). |
[82] |
D. Stan, F. del Teso and J. L. Vázquez, Finite and infinite speed of propagation for porous medium equations with fractional pressure, Comptes Rendus Acad. Sci. Paris, 352 (2014), 123-128, arXiv:1311.7007. |
[83] |
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. |
[84] |
G. Talenti, Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. (4), 3 (1976), 697-718. |
[85] |
G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4), 110 (1976), 353-372.doi: 10.1007/BF02418013. |
[86] |
F. del Teso, Finite difference method for a fractional porous medium equation, to appear in Calcolo, arXiv:1301.4349, (2013).doi: 10.1007/s10092-013-0103-7. |
[87] |
F. del Teso and J. L. Vázquez, Finite difference method for a general fractional porous medium equation, arXiv:1307.2474v1. |
[88] |
E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl., 49 (2009), 33-44. |
[89] |
J. L. Vázquez, Symétrisation pour $u_t=\Delta\varphi(u)$ et applications, C. R. Acad. Sc. Paris, 295 (1982), 71-74. |
[90] |
J. L. Vázquez, Smoothing And Decay Estimates For Nonlinear Diffusion Equations. Equations Of Porous Medium Type, Oxford Lecture Series in Mathematics and its Applications, 33, Oxford University Press, Oxford, 2006.doi: 10.1093/acprof:oso/9780199202973.001.0001. |
[91] |
J. L. Vázquez, The Porous Medium Equation. Mathematical Theory, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2007. |
[92] |
J. L. Vázquez, Nonlinear diffusion with fractional laplacian operators, in Nonlinear partial differential equations: the Abel Symposium 2010 (ed. H. Kenneth), Holden, Helge & Karlsen, Springer, 2012, 271-298. |
[93] |
J. L. Vázquez, Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type, to appear in J. Europ. Math. Soc.; arXiv:1205.6332, (2013). |
[94] |
J. L. Vázquez, A. de Pablo, F. Quirós and A. Rodríguez, Classical solutions and higher regularity for nonlinear fractional diffusion equations; arXiv:1311.7427. |
[95] |
J. L. Vázquez and B. Volzone, Symmetrization for linear and nonlinear fractional parabolic equations of porous medium type, to appear in J. Math. Pures Appl.; arXiv:1303.2970. |
[96] |
J. L. Vázquez and B. Volzone, Optimal estimates for Fractional Fast diffusion equations, submitted, arXiv:1310.3218v1. |
[97] |
L. Vlahos, H. Isliker, Y. Kominis and K. Hizonidis, Normal and anomalous Diffusion: A tutorial, in Order and Chaos, 10th volume, (ed. T. Bountis), Patras University Press, 2008. |
[98] |
H. Weinberger, Symmetrization in Uniformly Elliptic Problems, in 1962 Studies in Mathematical Analysis and Related Topics, Stanford Univ. Press, Stanford, Calif., 1962, 424-428. |
[99] |
H. Weitzner and G. M. Zaslavsky, Some applications of fractional equations. Chaotic transport and complexity in classical and quantum dynamics, Commun. Nonlinear Sci. Numer. Simul., 8 (2003), 273-281.doi: 10.1016/S1007-5704(03)00049-2. |
[100] |
W. A. Woyczyński, Lévy processes in the physical sciences, in Lévy Processes - Theory and Applications, (eds. T. Mikosch, O. Barndorff-Nielsen and S. Resnick), Birkhäuser, Boston, 2001, 241-266. |
[101] |
Ya. B. Zel'dovich and A. S. Kompanyeets, Towards a theory of heat conduction with thermal conductivity depending on the temperature, in Collection of Papers Dedicated to 70th Anniversary of A. F. Ioffe, Izd. Akad. Nauk SSSR, Moscow, 1950, 61-72. |