October  2014, 7(5): 901-916. doi: 10.3934/dcdss.2014.7.901

Linearized Navier-Stokes equations in $\mathbb{R}^3$: An approach in weighted Sobolev spaces

1. 

Laboratoire de Mathématiques et de leurs Applications, CNRS UMR 5142, Université de Pau et des Pays de l'Adour, 64013 Pau, France, France

2. 

Mathematical Institute, Academy of Sciences of the Czech Republic, Žitná 25, 115 67 Praha 1

Received  April 2013 Published  May 2014

In this work, we study the linearized Navier-Stokes equations in $\mathbb{R}^3$, the Oseen equations. We are interested in the existence and the uniqueness of generalized and strong solutions in $L^p$-theory which makes analysis more difficult. Our approach rests on the use of weighted Sobolev spaces.
Citation: Chérif Amrouche, Mohamed Meslameni, Šárka Nečasová. Linearized Navier-Stokes equations in $\mathbb{R}^3$: An approach in weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 901-916. doi: 10.3934/dcdss.2014.7.901
References:
[1]

F. Alliot and C. Amrouche, The Stokes problem in $\mathbbR^n$: An approach in weighted Sobolev spaces,, Math. Mod. Meth. Appl. Sci., 9 (1999), 723.  doi: 10.1142/S0218202599000361.  Google Scholar

[2]

C. Amrouche and L. Consiglieri, On the stationary Oseen equations in $\mathbbR^{3}$,, Communications in Mathematical Analysis, 10 (2011), 5.   Google Scholar

[3]

C. Amrouche, V. Girault and J. Giroire, Weighted Sobolev spaces for the laplace equation in $\mathbbR^n$,, J. Math. Pures et Appl., 73 (1994), 579.   Google Scholar

[4]

C. Amrouche and M. A. Rodriguez-Bellido, Stationary Stokes, Oseen and Navier-Stokes equations with singular data,, Archive for Rational Mechanics and Analysis, 199 (2011), 597.  doi: 10.1007/s00205-010-0340-8.  Google Scholar

[5]

M. Cantor, Spaces of functions with asymptotic conditions on $\mathbbR^n$,, Indiana Univ. Math. J., 24 (1975), 897.   Google Scholar

[6]

R. Farwig, The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces,, Math. Z, 211 (1992), 409.  doi: 10.1007/BF02571437.  Google Scholar

[7]

R. Farwig, The stationary Navier-Stokes equations in a 3D-exterior domain,, in Recent Topics on Mathematical Theory of Viscous Incompressible Fluid (Tsukuba, (1996), 53.   Google Scholar

[8]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I. Linearized Steady Problems,, Springer Tracts in Natural Philosophy, (1994).   Google Scholar

[9]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. II. Nonlinear Steady Problems,, Springer Tracts in Natural Philosophy, (1994).   Google Scholar

[10]

B. Hanouzet, Espace de Sobolev avec poids. Application au problème de Dirichlet dans un demi espace,, Rend. Sem. Mat. Univ. Padova, 46 (1971), 227.   Google Scholar

show all references

References:
[1]

F. Alliot and C. Amrouche, The Stokes problem in $\mathbbR^n$: An approach in weighted Sobolev spaces,, Math. Mod. Meth. Appl. Sci., 9 (1999), 723.  doi: 10.1142/S0218202599000361.  Google Scholar

[2]

C. Amrouche and L. Consiglieri, On the stationary Oseen equations in $\mathbbR^{3}$,, Communications in Mathematical Analysis, 10 (2011), 5.   Google Scholar

[3]

C. Amrouche, V. Girault and J. Giroire, Weighted Sobolev spaces for the laplace equation in $\mathbbR^n$,, J. Math. Pures et Appl., 73 (1994), 579.   Google Scholar

[4]

C. Amrouche and M. A. Rodriguez-Bellido, Stationary Stokes, Oseen and Navier-Stokes equations with singular data,, Archive for Rational Mechanics and Analysis, 199 (2011), 597.  doi: 10.1007/s00205-010-0340-8.  Google Scholar

[5]

M. Cantor, Spaces of functions with asymptotic conditions on $\mathbbR^n$,, Indiana Univ. Math. J., 24 (1975), 897.   Google Scholar

[6]

R. Farwig, The stationary exterior 3D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces,, Math. Z, 211 (1992), 409.  doi: 10.1007/BF02571437.  Google Scholar

[7]

R. Farwig, The stationary Navier-Stokes equations in a 3D-exterior domain,, in Recent Topics on Mathematical Theory of Viscous Incompressible Fluid (Tsukuba, (1996), 53.   Google Scholar

[8]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I. Linearized Steady Problems,, Springer Tracts in Natural Philosophy, (1994).   Google Scholar

[9]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. II. Nonlinear Steady Problems,, Springer Tracts in Natural Philosophy, (1994).   Google Scholar

[10]

B. Hanouzet, Espace de Sobolev avec poids. Application au problème de Dirichlet dans un demi espace,, Rend. Sem. Mat. Univ. Padova, 46 (1971), 227.   Google Scholar

[1]

Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286

[2]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[3]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[4]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[5]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[6]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[7]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[8]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[9]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[10]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[11]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[12]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[13]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

[14]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[15]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[16]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[17]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[18]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[19]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[20]

Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (3)

[Back to Top]