Advanced Search
Article Contents
Article Contents

Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov-Smagulov type model

Abstract Related Papers Cited by
  • We establish the global-in-time existence of strong solution to the initial-boundary value problem of a 2-D Kazhikov-Smagulov type model for incompressible nonhomogeneous fluids with mass diffusion for arbitrary size of initial data.
    Mathematics Subject Classification: 35Q30, 35D10.


    \begin{equation} \\ \end{equation}
  • [1]

    S. Antonsev, A. Kazhikhov and V. Monakov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, Translated from the Russian, Studies in Mathematics and its Applications, 22, North-Holland Publishing Co., Amsterdam, 1990.


    H. Beirao da Veiga, Diffusion on viscous fluids: Existence and asymptotic properties of solutions, Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4), 10 (1983), 341-355.


    D. Bresch, El. H. Essoufi and M. Sy, Effect of density dependent viscosities on multiphasic incompressible fluid models, J. Math. Fluid Mech., 9 (2007), 377-397.doi: 10.1007/s00021-005-0204-4.


    X. Cai, L. Liao and Y. Sun, Global regularity for the initial value problem of a 2-D Kazhikhov-Smagulov type model, Nonlinear Anal., 75 (2012), 5975-5983.doi: 10.1016/j.na.2012.06.011.


    P. Constantin and C. Foias, Navier-Stokes Equations, Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1988.


    P. Embid, Well-posedness of the nonlinear equations for zero Mach number combustion, Comm. PDE, 12 (1987), 1227-1283.doi: 10.1080/03605308708820526.


    P. Embid, On the reactive and nondiffusive equations for zero Mach number flow, Comm. PDE, 14 (1989), 1249-1281.doi: 10.1080/03605308908820652.


    A. Kazhikhov and Sh. Smagulov, The correctness of boundary value problems in a diffusion model of an inhomogeneous fluid, Sov. Phys. Dokl., 22 (1977), 249-252.


    O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'tceva, Linear and Quasi-Linear Parabolic Equations, Amer. Math. Soc., Providence, RI, 1968.


    P.-L. Lions, Mathematical Topics in Fluid Dynamics, Vol. 1, Incompressible Models, Oxford Lecture Series in Mathematics and its Applications, 3, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1996.


    A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Dimensions, Appl. Math. Sci., 53, Springer-Verlag, New York, 1984.doi: 10.1007/978-1-4612-1116-7.


    P. Secchi, On the initial value problem for the equations of motion of viscous incompressible fluids in the presence of diffusion, Boll. Un. Mat. Ital., B (6), 1 (1982), 1117-1130.


    P. Secchi, On the motion of viscous fluids in the presence of diffusion, SIAM J. Math. Anal., 19 (1988), 22-31.doi: 10.1137/0519002.


    V. A. Solonnikov, $L^p$-estimates for solutions to the initial boundary-value problem for the generalized Stokes system in a bounded domain, J. Math. Sci., (New York), 105 (2001), 2448-2484.doi: 10.1023/A:1011321430954.


    Y. Sun and Z. Zhang, Global regularity for the initial-boundary value problem of the 2-D Boussinesq system with variable viscosity and thermal diffusivity, J. Diff. Equa., 225 (2013), 1069-1085.doi: 10.1016/j.jde.2013.04.032.


    C. Wang and Z. Zhang, Global well-posedness for the 2-D Boussinesq system with the temperature-dependent viscosity and thermal diffusivity, Adv. in Math., 228 (2011), 43-62.doi: 10.1016/j.aim.2011.05.008.

  • 加载中

Article Metrics

HTML views() PDF downloads(74) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint