October  2014, 7(5): 993-1023. doi: 10.3934/dcdss.2014.7.993

Convergent finite differences for 1D viscous isentropic flow in Eulerian coordinates

1. 

Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, 7491, Norway

Received  March 2013 Published  May 2014

We construct a new finite difference method for the flow of ideal viscous isentropic gas in one spatial dimension. For the continuity equation, the method is a standard upwind discretization. For the momentum equation, the method is an uncommon upwind discretization, where the moment and the velocity are solved on dual grids. Our main result is convergence of the method as discretization parameters go to zero. Convergence is proved by adapting the mathematical existence theory of Lions and Feireisl to the numerical setting.
Citation: Trygve K. Karper. Convergent finite differences for 1D viscous isentropic flow in Eulerian coordinates. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 993-1023. doi: 10.3934/dcdss.2014.7.993
References:
[1]

G.-Q. Chen, D. Hoff and K. Trivisa, Global solutions of the compressible Navier-Stokes equations with large discontinuous initial data,, Comm. Partial Differential Equations, 25 (2000), 2233.  doi: 10.1080/03605300008821583.  Google Scholar

[2]

R. Eymard, T. Gallouët, R. Herbin and J.-C. Latché, Convergence of the MAC scheme for the compressible Stokes equations,, SIAM J. Numer. Anal., 48 (2010), 2218.  doi: 10.1137/090779863.  Google Scholar

[3]

R. Eymard, T. Gallouët, R. Herbin and J.-C. Latché, A convergent finite element-finite volume scheme for the compressible Stokes problem. Part II: The isentropic case,, Math. Comp., 79 (2010), 649.  doi: 10.1090/S0025-5718-09-02310-2.  Google Scholar

[4]

E. Feireisl., Dynamics of Viscous Compressible Fluids,, Oxford Lecture Series in Mathematics and its Applications, (2004).   Google Scholar

[5]

T. Gallouët, R. Herbin and J.-C. Latché, A convergent finite element-finite volume scheme for the compressible Stokes problem. Part I: The isothermal case,, Math. Comp., 78 (2009), 1333.  doi: 10.1090/S0025-5718-09-02216-9.  Google Scholar

[6]

T. Gallouët, L. Gestaldo, R. Herbin and J.-C. Latché, An unconditionally stable pressure correction scheme for the compressible barotropic Navier-Stokes equations,, M2AN Math. Model. Numer. Anal., 42 (2008), 303.  doi: 10.1051/m2an:2008005.  Google Scholar

[7]

D. Hoff, Global existence for $1$D, compressible, isentropic Navier-Stokes equations with large initial data,, Trans. Amer. Math. Soc., 303 (1987), 169.  doi: 10.2307/2000785.  Google Scholar

[8]

H. K. Jenssen and T. K. Karper, One-dimensional compressible flow with temperature dependent transport coefficients,, SIAM J. Math. Anal., 42 (2010), 904.  doi: 10.1137/090763135.  Google Scholar

[9]

J. I. Kanel', A model system of equations for the one-dimensional motion of a gas,, Differencial' nye Uravnenija., 4 (1968), 721.   Google Scholar

[10]

K. Karlsen and T. K. Karper, A convergent nonconforming method for compressible flow,, SIAM J. Numer. Anal., 48 (2010), 1847.  doi: 10.1137/09076310X.  Google Scholar

[11]

K. Karlsen and T. K. Karper, Convergence of a mixed method for a semi-stationary compressible Stokes system,, Math. Comp., 80 (2011), 1459.  doi: 10.1090/S0025-5718-2010-02446-9.  Google Scholar

[12]

K. Karlsen and T. K. Karper, A convergent mixed method for the Stokes approximation of viscous compressible flow,, IMA J. Numer. Anal., 32 (2011), 725.  doi: 10.1093/imanum/drq048.  Google Scholar

[13]

T. K. Karper, A convergent FEM-DG method for the compressible Navier-Stokes equations,, Numer. Math., 125 (2013), 441.  doi: 10.1007/s00211-013-0543-7.  Google Scholar

[14]

A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas,, Prikl. Mat. Meh., 41 (1977), 282.   Google Scholar

[15]

P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 2: Compressible Models,, Oxford University Press, (1998).   Google Scholar

[16]

A. Novotný and I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow,, Oxford University Press, (2004).   Google Scholar

[17]

J. Serrin, Mathematical principles of classical fluid mechanics,, in 1959 Handbuch der Physik (herausgegeben von S. Flügge), (): 125.   Google Scholar

[18]

R. Zarnowski and D. Hoff, A finite-difference scheme for the Navier-Stokes equations of one-dimensional, isentropic, compressible flow,, SIAM J. Numer. Anal., 28 (1991), 78.  doi: 10.1137/0728004.  Google Scholar

[19]

J. Zhao and D. Hoff, A convergent finite-difference scheme for the Navier-Stokes equations of one-dimensional, nonisentropic, compressible flow,, SIAM J. Numer. Anal., 31 (1994), 1289.  doi: 10.1137/0731067.  Google Scholar

[20]

J. J. Zhao and D. Hoff, Convergence and error bound analysis of a finite-difference scheme for the one-dimensional Navier-Stokes equations,, in Nonlinear Evolutionary Partial Differential Equations (Beijing, (1993), 625.   Google Scholar

show all references

References:
[1]

G.-Q. Chen, D. Hoff and K. Trivisa, Global solutions of the compressible Navier-Stokes equations with large discontinuous initial data,, Comm. Partial Differential Equations, 25 (2000), 2233.  doi: 10.1080/03605300008821583.  Google Scholar

[2]

R. Eymard, T. Gallouët, R. Herbin and J.-C. Latché, Convergence of the MAC scheme for the compressible Stokes equations,, SIAM J. Numer. Anal., 48 (2010), 2218.  doi: 10.1137/090779863.  Google Scholar

[3]

R. Eymard, T. Gallouët, R. Herbin and J.-C. Latché, A convergent finite element-finite volume scheme for the compressible Stokes problem. Part II: The isentropic case,, Math. Comp., 79 (2010), 649.  doi: 10.1090/S0025-5718-09-02310-2.  Google Scholar

[4]

E. Feireisl., Dynamics of Viscous Compressible Fluids,, Oxford Lecture Series in Mathematics and its Applications, (2004).   Google Scholar

[5]

T. Gallouët, R. Herbin and J.-C. Latché, A convergent finite element-finite volume scheme for the compressible Stokes problem. Part I: The isothermal case,, Math. Comp., 78 (2009), 1333.  doi: 10.1090/S0025-5718-09-02216-9.  Google Scholar

[6]

T. Gallouët, L. Gestaldo, R. Herbin and J.-C. Latché, An unconditionally stable pressure correction scheme for the compressible barotropic Navier-Stokes equations,, M2AN Math. Model. Numer. Anal., 42 (2008), 303.  doi: 10.1051/m2an:2008005.  Google Scholar

[7]

D. Hoff, Global existence for $1$D, compressible, isentropic Navier-Stokes equations with large initial data,, Trans. Amer. Math. Soc., 303 (1987), 169.  doi: 10.2307/2000785.  Google Scholar

[8]

H. K. Jenssen and T. K. Karper, One-dimensional compressible flow with temperature dependent transport coefficients,, SIAM J. Math. Anal., 42 (2010), 904.  doi: 10.1137/090763135.  Google Scholar

[9]

J. I. Kanel', A model system of equations for the one-dimensional motion of a gas,, Differencial' nye Uravnenija., 4 (1968), 721.   Google Scholar

[10]

K. Karlsen and T. K. Karper, A convergent nonconforming method for compressible flow,, SIAM J. Numer. Anal., 48 (2010), 1847.  doi: 10.1137/09076310X.  Google Scholar

[11]

K. Karlsen and T. K. Karper, Convergence of a mixed method for a semi-stationary compressible Stokes system,, Math. Comp., 80 (2011), 1459.  doi: 10.1090/S0025-5718-2010-02446-9.  Google Scholar

[12]

K. Karlsen and T. K. Karper, A convergent mixed method for the Stokes approximation of viscous compressible flow,, IMA J. Numer. Anal., 32 (2011), 725.  doi: 10.1093/imanum/drq048.  Google Scholar

[13]

T. K. Karper, A convergent FEM-DG method for the compressible Navier-Stokes equations,, Numer. Math., 125 (2013), 441.  doi: 10.1007/s00211-013-0543-7.  Google Scholar

[14]

A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas,, Prikl. Mat. Meh., 41 (1977), 282.   Google Scholar

[15]

P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 2: Compressible Models,, Oxford University Press, (1998).   Google Scholar

[16]

A. Novotný and I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow,, Oxford University Press, (2004).   Google Scholar

[17]

J. Serrin, Mathematical principles of classical fluid mechanics,, in 1959 Handbuch der Physik (herausgegeben von S. Flügge), (): 125.   Google Scholar

[18]

R. Zarnowski and D. Hoff, A finite-difference scheme for the Navier-Stokes equations of one-dimensional, isentropic, compressible flow,, SIAM J. Numer. Anal., 28 (1991), 78.  doi: 10.1137/0728004.  Google Scholar

[19]

J. Zhao and D. Hoff, A convergent finite-difference scheme for the Navier-Stokes equations of one-dimensional, nonisentropic, compressible flow,, SIAM J. Numer. Anal., 31 (1994), 1289.  doi: 10.1137/0731067.  Google Scholar

[20]

J. J. Zhao and D. Hoff, Convergence and error bound analysis of a finite-difference scheme for the one-dimensional Navier-Stokes equations,, in Nonlinear Evolutionary Partial Differential Equations (Beijing, (1993), 625.   Google Scholar

[1]

Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226

[2]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[3]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[4]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[5]

Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126

[6]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[7]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[8]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[9]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[10]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[11]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[12]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[13]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[14]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[15]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[16]

Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021009

[17]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[18]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[19]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[20]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]