-
Previous Article
Existence and decay of solutions of the 2D QG equation in the presence of an obstacle
- DCDS-S Home
- This Issue
-
Next Article
Thermo-visco-elasticity for the Mróz model in the framework of thermodynamically complete systems
Convergent finite differences for 1D viscous isentropic flow in Eulerian coordinates
1. | Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, 7491, Norway |
References:
[1] |
G.-Q. Chen, D. Hoff and K. Trivisa, Global solutions of the compressible Navier-Stokes equations with large discontinuous initial data,, Comm. Partial Differential Equations, 25 (2000), 2233.
doi: 10.1080/03605300008821583. |
[2] |
R. Eymard, T. Gallouët, R. Herbin and J.-C. Latché, Convergence of the MAC scheme for the compressible Stokes equations,, SIAM J. Numer. Anal., 48 (2010), 2218.
doi: 10.1137/090779863. |
[3] |
R. Eymard, T. Gallouët, R. Herbin and J.-C. Latché, A convergent finite element-finite volume scheme for the compressible Stokes problem. Part II: The isentropic case,, Math. Comp., 79 (2010), 649.
doi: 10.1090/S0025-5718-09-02310-2. |
[4] |
E. Feireisl., Dynamics of Viscous Compressible Fluids,, Oxford Lecture Series in Mathematics and its Applications, (2004).
|
[5] |
T. Gallouët, R. Herbin and J.-C. Latché, A convergent finite element-finite volume scheme for the compressible Stokes problem. Part I: The isothermal case,, Math. Comp., 78 (2009), 1333.
doi: 10.1090/S0025-5718-09-02216-9. |
[6] |
T. Gallouët, L. Gestaldo, R. Herbin and J.-C. Latché, An unconditionally stable pressure correction scheme for the compressible barotropic Navier-Stokes equations,, M2AN Math. Model. Numer. Anal., 42 (2008), 303.
doi: 10.1051/m2an:2008005. |
[7] |
D. Hoff, Global existence for $1$D, compressible, isentropic Navier-Stokes equations with large initial data,, Trans. Amer. Math. Soc., 303 (1987), 169.
doi: 10.2307/2000785. |
[8] |
H. K. Jenssen and T. K. Karper, One-dimensional compressible flow with temperature dependent transport coefficients,, SIAM J. Math. Anal., 42 (2010), 904.
doi: 10.1137/090763135. |
[9] |
J. I. Kanel', A model system of equations for the one-dimensional motion of a gas,, Differencial' nye Uravnenija., 4 (1968), 721.
|
[10] |
K. Karlsen and T. K. Karper, A convergent nonconforming method for compressible flow,, SIAM J. Numer. Anal., 48 (2010), 1847.
doi: 10.1137/09076310X. |
[11] |
K. Karlsen and T. K. Karper, Convergence of a mixed method for a semi-stationary compressible Stokes system,, Math. Comp., 80 (2011), 1459.
doi: 10.1090/S0025-5718-2010-02446-9. |
[12] |
K. Karlsen and T. K. Karper, A convergent mixed method for the Stokes approximation of viscous compressible flow,, IMA J. Numer. Anal., 32 (2011), 725.
doi: 10.1093/imanum/drq048. |
[13] |
T. K. Karper, A convergent FEM-DG method for the compressible Navier-Stokes equations,, Numer. Math., 125 (2013), 441.
doi: 10.1007/s00211-013-0543-7. |
[14] |
A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas,, Prikl. Mat. Meh., 41 (1977), 282.
|
[15] |
P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 2: Compressible Models,, Oxford University Press, (1998).
|
[16] |
A. Novotný and I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow,, Oxford University Press, (2004).
|
[17] |
J. Serrin, Mathematical principles of classical fluid mechanics,, in 1959 Handbuch der Physik (herausgegeben von S. Flügge), (): 125.
|
[18] |
R. Zarnowski and D. Hoff, A finite-difference scheme for the Navier-Stokes equations of one-dimensional, isentropic, compressible flow,, SIAM J. Numer. Anal., 28 (1991), 78.
doi: 10.1137/0728004. |
[19] |
J. Zhao and D. Hoff, A convergent finite-difference scheme for the Navier-Stokes equations of one-dimensional, nonisentropic, compressible flow,, SIAM J. Numer. Anal., 31 (1994), 1289.
doi: 10.1137/0731067. |
[20] |
J. J. Zhao and D. Hoff, Convergence and error bound analysis of a finite-difference scheme for the one-dimensional Navier-Stokes equations,, in Nonlinear Evolutionary Partial Differential Equations (Beijing, (1993), 625.
|
show all references
References:
[1] |
G.-Q. Chen, D. Hoff and K. Trivisa, Global solutions of the compressible Navier-Stokes equations with large discontinuous initial data,, Comm. Partial Differential Equations, 25 (2000), 2233.
doi: 10.1080/03605300008821583. |
[2] |
R. Eymard, T. Gallouët, R. Herbin and J.-C. Latché, Convergence of the MAC scheme for the compressible Stokes equations,, SIAM J. Numer. Anal., 48 (2010), 2218.
doi: 10.1137/090779863. |
[3] |
R. Eymard, T. Gallouët, R. Herbin and J.-C. Latché, A convergent finite element-finite volume scheme for the compressible Stokes problem. Part II: The isentropic case,, Math. Comp., 79 (2010), 649.
doi: 10.1090/S0025-5718-09-02310-2. |
[4] |
E. Feireisl., Dynamics of Viscous Compressible Fluids,, Oxford Lecture Series in Mathematics and its Applications, (2004).
|
[5] |
T. Gallouët, R. Herbin and J.-C. Latché, A convergent finite element-finite volume scheme for the compressible Stokes problem. Part I: The isothermal case,, Math. Comp., 78 (2009), 1333.
doi: 10.1090/S0025-5718-09-02216-9. |
[6] |
T. Gallouët, L. Gestaldo, R. Herbin and J.-C. Latché, An unconditionally stable pressure correction scheme for the compressible barotropic Navier-Stokes equations,, M2AN Math. Model. Numer. Anal., 42 (2008), 303.
doi: 10.1051/m2an:2008005. |
[7] |
D. Hoff, Global existence for $1$D, compressible, isentropic Navier-Stokes equations with large initial data,, Trans. Amer. Math. Soc., 303 (1987), 169.
doi: 10.2307/2000785. |
[8] |
H. K. Jenssen and T. K. Karper, One-dimensional compressible flow with temperature dependent transport coefficients,, SIAM J. Math. Anal., 42 (2010), 904.
doi: 10.1137/090763135. |
[9] |
J. I. Kanel', A model system of equations for the one-dimensional motion of a gas,, Differencial' nye Uravnenija., 4 (1968), 721.
|
[10] |
K. Karlsen and T. K. Karper, A convergent nonconforming method for compressible flow,, SIAM J. Numer. Anal., 48 (2010), 1847.
doi: 10.1137/09076310X. |
[11] |
K. Karlsen and T. K. Karper, Convergence of a mixed method for a semi-stationary compressible Stokes system,, Math. Comp., 80 (2011), 1459.
doi: 10.1090/S0025-5718-2010-02446-9. |
[12] |
K. Karlsen and T. K. Karper, A convergent mixed method for the Stokes approximation of viscous compressible flow,, IMA J. Numer. Anal., 32 (2011), 725.
doi: 10.1093/imanum/drq048. |
[13] |
T. K. Karper, A convergent FEM-DG method for the compressible Navier-Stokes equations,, Numer. Math., 125 (2013), 441.
doi: 10.1007/s00211-013-0543-7. |
[14] |
A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas,, Prikl. Mat. Meh., 41 (1977), 282.
|
[15] |
P.-L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 2: Compressible Models,, Oxford University Press, (1998).
|
[16] |
A. Novotný and I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow,, Oxford University Press, (2004).
|
[17] |
J. Serrin, Mathematical principles of classical fluid mechanics,, in 1959 Handbuch der Physik (herausgegeben von S. Flügge), (): 125.
|
[18] |
R. Zarnowski and D. Hoff, A finite-difference scheme for the Navier-Stokes equations of one-dimensional, isentropic, compressible flow,, SIAM J. Numer. Anal., 28 (1991), 78.
doi: 10.1137/0728004. |
[19] |
J. Zhao and D. Hoff, A convergent finite-difference scheme for the Navier-Stokes equations of one-dimensional, nonisentropic, compressible flow,, SIAM J. Numer. Anal., 31 (1994), 1289.
doi: 10.1137/0731067. |
[20] |
J. J. Zhao and D. Hoff, Convergence and error bound analysis of a finite-difference scheme for the one-dimensional Navier-Stokes equations,, in Nonlinear Evolutionary Partial Differential Equations (Beijing, (1993), 625.
|
[1] |
Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226 |
[2] |
Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096 |
[3] |
Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120 |
[4] |
Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097 |
[5] |
Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126 |
[6] |
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020348 |
[7] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[8] |
Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234 |
[9] |
Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241 |
[10] |
Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001 |
[11] |
Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077 |
[12] |
Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020453 |
[13] |
Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141 |
[14] |
Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020458 |
[15] |
Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304 |
[16] |
Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021009 |
[17] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[18] |
Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020408 |
[19] |
Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142 |
[20] |
Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]