October  2015, 8(5): 1009-1022. doi: 10.3934/dcdss.2015.8.1009

Towards modelling spiral motion of open plane curves

1. 

Department of Mathematical Sciences, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan

2. 

Department of Mathematics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kanagawa 214-8571

Received  January 2014 Revised  June 2014 Published  July 2015

We propose a simple evolution law for the motion of open curves with the boundary conditions towards realizing spiral growth, and derive the so-called kinematic equation. The role of the tangential velocities is studied and proved that they can be chosen arbitrarily for given boundary values. From this fact, a curvature adjusted tangential velocity for open curves is introduced. We present a numerical example which provides spiral motion starting from a line segment. This is a contrast to the case where an expanding line segment is the exact solution without the boundary conditions.
Citation: Koichi Osaki, Hirotoshi Satoh, Shigetoshi Yazaki. Towards modelling spiral motion of open plane curves. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 1009-1022. doi: 10.3934/dcdss.2015.8.1009
References:
[1]

P. K. Brazhnik, Exact solutions for the kinematic model of autowaves in two-dimensional excitable media,, Phys. D, 94 (1996), 205.  doi: 10.1016/0167-2789(96)00042-5.  Google Scholar

[2]

Y.-Y. Chen, J.-S. Guo and H. Ninomiya, Existence and uniqueness of rigidly rotating spiral waves by a wave front interaction model,, Phys. D, 241 (2012), 1758.  doi: 10.1016/j.physd.2012.08.004.  Google Scholar

[3]

V. A. Davydov, V. S. Zykov and A. S. Mikhailov, Kinematics of autowave structures in excitable media,, Sov. Phys. Usp., 34 (1991), 665.   Google Scholar

[4]

C. L. Epstein and M. Gage, The curve shortening flow,, Wave motion: Theory, 7 (1987), 15.  doi: 10.1007/978-1-4613-9583-6_2.  Google Scholar

[5]

B. Fiedler, J.-S. Guo and J.-C. Tsai, Rotating spirals of curvature flows: A center manifold approach,, Ann. Mat. Pura Appl., 185 (2006).  doi: 10.1007/s10231-004-0145-1.  Google Scholar

[6]

J.-S. Guo, N. Ishimura and C.-C. Wu, Self-similar solutions for the kinematic model equation of spiral waves,, Phys. D, 198 (2004), 197.  doi: 10.1016/j.physd.2004.08.028.  Google Scholar

[7]

J.-S. Guo, H. Ninomiya and J.-C. Tsai, Existence and uniqueness of stabilized propagating wave segments in wave front interaction model,, Phys. D, 239 (2010), 230.  doi: 10.1016/j.physd.2009.11.001.  Google Scholar

[8]

R. Ikota, N. Ishimura and T. Yamaguchi, On the structure of steady solutions for the kinematic model of spiral waves in excitable media,, Japan J. Indust. Appl. Math., 15 (1998), 317.  doi: 10.1007/BF03167407.  Google Scholar

[9]

C.-P. Lo, N. S. Nedialkov and J.-M. Yuan, Classification of steady solutions of the full kinematic model,, Phys. D, 198 (2004), 258.  doi: 10.1016/j.physd.2004.09.002.  Google Scholar

[10]

A. S. Mikhailov and V. S. Zykov, Kinematical theory of spiral waves in excitable media: comparison with numerical simulations,, Phys. D, 52 (1991), 379.  doi: 10.1016/0167-2789(91)90134-U.  Google Scholar

[11]

A. S. Mikhailov, V. A. Davydov and V. S. Zykov, Complex dynamics of spiral waves and motion of curves,, Phys. D, 70 (1994), 1.  doi: 10.1016/0167-2789(94)90054-X.  Google Scholar

[12]

K. Mikula and D. Ševčovič, Evolution of plane curves driven by a nonlinear function of curvature and anisotropy,, SIAM J. Appl. Math., 61 (2001), 1473.  doi: 10.1137/S0036139999359288.  Google Scholar

[13]

K. Mikula and D. Ševčovič, Evolution of curves on a surface driven by the geodesic curvature and external force,, Appl. Anal., 85 (2006), 345.  doi: 10.1080/00036810500333604.  Google Scholar

[14]

T. Ogiwara and K.-I. Nakamura, Spiral traveling wave solutions of nonlinear diffusion equations related to a model of spiral crystal growth,, Publ. RIMS, 39 (2003), 767.  doi: 10.2977/prims/1145476046.  Google Scholar

[15]

T. Ohtsuka, Y.-H. R. Tsai and Y. Giga, A level set approach reflecting sheet structure with single auxiliary function for evolving spirals on crystal surfaces,, J. Sci. Comput., 62 (2015), 831.  doi: 10.1007/s10915-014-9877-2.  Google Scholar

[16]

P. Pauš, M. Beneš and J. Kratochvíl, Simulation of dislocation annihilation by cross-slip,, Acta Physica polonica Series A, 122 (2012), 509.   Google Scholar

[17]

T. Sakurai, K. Osaki and T. Tsujikawa, Kinematic model of propagating arc-like segments with feedback,, Phys. D, 237 (2008), 3165.  doi: 10.1016/j.physd.2008.06.001.  Google Scholar

[18]

D. Ševčovič and S. Yazaki, Evolution of plane curves with a curvature adjusted tangential velocity,, Japan J. Indust. Appl. Math., 28 (2011), 413.  doi: 10.1007/s13160-011-0046-9.  Google Scholar

[19]

D. Ševčovič and S. Yazaki, Computational and qualitative aspects of motion of plane curves with a curvature adjusted tangential velocity,, Math. Methods in Applied Sciences, 35 (2012), 1784.  doi: 10.1002/mma.2554.  Google Scholar

[20]

D. Ševčovič and S. Yazaki, On a gradient flow of plane curves minimizing the anisoperimetric ratio,, IAENG Int. J. Appl. Math., 43 (2013), 160.   Google Scholar

[21]

V. S. Zykov, Kinematics of wave segments moving through a weakly excitable medium,, Eur. Phys. J. Special Topics, 157 (2008), 209.  doi: 10.1140/epjst/e2008-00642-x.  Google Scholar

[22]

V. S. Zykov, Kinematics of rigidly rotating spiral waves,, Phys. D, 238 (2009), 931.  doi: 10.1016/j.physd.2008.06.009.  Google Scholar

[23]

V. S. Zykov, N. Oikawa and E. Bodenschatz, Selection of spiral waves in excitable media with a phase wave at the wave back,, Phys. Rev. Lett., 107 (2011).  doi: 10.1103/PhysRevLett.107.254101.  Google Scholar

show all references

References:
[1]

P. K. Brazhnik, Exact solutions for the kinematic model of autowaves in two-dimensional excitable media,, Phys. D, 94 (1996), 205.  doi: 10.1016/0167-2789(96)00042-5.  Google Scholar

[2]

Y.-Y. Chen, J.-S. Guo and H. Ninomiya, Existence and uniqueness of rigidly rotating spiral waves by a wave front interaction model,, Phys. D, 241 (2012), 1758.  doi: 10.1016/j.physd.2012.08.004.  Google Scholar

[3]

V. A. Davydov, V. S. Zykov and A. S. Mikhailov, Kinematics of autowave structures in excitable media,, Sov. Phys. Usp., 34 (1991), 665.   Google Scholar

[4]

C. L. Epstein and M. Gage, The curve shortening flow,, Wave motion: Theory, 7 (1987), 15.  doi: 10.1007/978-1-4613-9583-6_2.  Google Scholar

[5]

B. Fiedler, J.-S. Guo and J.-C. Tsai, Rotating spirals of curvature flows: A center manifold approach,, Ann. Mat. Pura Appl., 185 (2006).  doi: 10.1007/s10231-004-0145-1.  Google Scholar

[6]

J.-S. Guo, N. Ishimura and C.-C. Wu, Self-similar solutions for the kinematic model equation of spiral waves,, Phys. D, 198 (2004), 197.  doi: 10.1016/j.physd.2004.08.028.  Google Scholar

[7]

J.-S. Guo, H. Ninomiya and J.-C. Tsai, Existence and uniqueness of stabilized propagating wave segments in wave front interaction model,, Phys. D, 239 (2010), 230.  doi: 10.1016/j.physd.2009.11.001.  Google Scholar

[8]

R. Ikota, N. Ishimura and T. Yamaguchi, On the structure of steady solutions for the kinematic model of spiral waves in excitable media,, Japan J. Indust. Appl. Math., 15 (1998), 317.  doi: 10.1007/BF03167407.  Google Scholar

[9]

C.-P. Lo, N. S. Nedialkov and J.-M. Yuan, Classification of steady solutions of the full kinematic model,, Phys. D, 198 (2004), 258.  doi: 10.1016/j.physd.2004.09.002.  Google Scholar

[10]

A. S. Mikhailov and V. S. Zykov, Kinematical theory of spiral waves in excitable media: comparison with numerical simulations,, Phys. D, 52 (1991), 379.  doi: 10.1016/0167-2789(91)90134-U.  Google Scholar

[11]

A. S. Mikhailov, V. A. Davydov and V. S. Zykov, Complex dynamics of spiral waves and motion of curves,, Phys. D, 70 (1994), 1.  doi: 10.1016/0167-2789(94)90054-X.  Google Scholar

[12]

K. Mikula and D. Ševčovič, Evolution of plane curves driven by a nonlinear function of curvature and anisotropy,, SIAM J. Appl. Math., 61 (2001), 1473.  doi: 10.1137/S0036139999359288.  Google Scholar

[13]

K. Mikula and D. Ševčovič, Evolution of curves on a surface driven by the geodesic curvature and external force,, Appl. Anal., 85 (2006), 345.  doi: 10.1080/00036810500333604.  Google Scholar

[14]

T. Ogiwara and K.-I. Nakamura, Spiral traveling wave solutions of nonlinear diffusion equations related to a model of spiral crystal growth,, Publ. RIMS, 39 (2003), 767.  doi: 10.2977/prims/1145476046.  Google Scholar

[15]

T. Ohtsuka, Y.-H. R. Tsai and Y. Giga, A level set approach reflecting sheet structure with single auxiliary function for evolving spirals on crystal surfaces,, J. Sci. Comput., 62 (2015), 831.  doi: 10.1007/s10915-014-9877-2.  Google Scholar

[16]

P. Pauš, M. Beneš and J. Kratochvíl, Simulation of dislocation annihilation by cross-slip,, Acta Physica polonica Series A, 122 (2012), 509.   Google Scholar

[17]

T. Sakurai, K. Osaki and T. Tsujikawa, Kinematic model of propagating arc-like segments with feedback,, Phys. D, 237 (2008), 3165.  doi: 10.1016/j.physd.2008.06.001.  Google Scholar

[18]

D. Ševčovič and S. Yazaki, Evolution of plane curves with a curvature adjusted tangential velocity,, Japan J. Indust. Appl. Math., 28 (2011), 413.  doi: 10.1007/s13160-011-0046-9.  Google Scholar

[19]

D. Ševčovič and S. Yazaki, Computational and qualitative aspects of motion of plane curves with a curvature adjusted tangential velocity,, Math. Methods in Applied Sciences, 35 (2012), 1784.  doi: 10.1002/mma.2554.  Google Scholar

[20]

D. Ševčovič and S. Yazaki, On a gradient flow of plane curves minimizing the anisoperimetric ratio,, IAENG Int. J. Appl. Math., 43 (2013), 160.   Google Scholar

[21]

V. S. Zykov, Kinematics of wave segments moving through a weakly excitable medium,, Eur. Phys. J. Special Topics, 157 (2008), 209.  doi: 10.1140/epjst/e2008-00642-x.  Google Scholar

[22]

V. S. Zykov, Kinematics of rigidly rotating spiral waves,, Phys. D, 238 (2009), 931.  doi: 10.1016/j.physd.2008.06.009.  Google Scholar

[23]

V. S. Zykov, N. Oikawa and E. Bodenschatz, Selection of spiral waves in excitable media with a phase wave at the wave back,, Phys. Rev. Lett., 107 (2011).  doi: 10.1103/PhysRevLett.107.254101.  Google Scholar

[1]

Tetsuya Ishiwata. Crystalline motion of spiral-shaped polygonal curves with a tip motion. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 53-62. doi: 10.3934/dcdss.2014.7.53

[2]

Jamie Cruz, Miguel Gutiérrez. Spiral motion in classical mechanics. Conference Publications, 2009, 2009 (Special) : 191-197. doi: 10.3934/proc.2009.2009.191

[3]

Tzong-Yow Lee and Fred Torcaso. Wave propagation in a lattice KPP equation in random media. Electronic Research Announcements, 1997, 3: 121-125.

[4]

Tetsuya Ishiwata. On spiral solutions to generalized crystalline motion with a rotating tip motion. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 881-888. doi: 10.3934/dcdss.2015.8.881

[5]

Abdelmouhcene Sengouga. Exact boundary observability and controllability of the wave equation in an interval with two moving endpoints. Evolution Equations & Control Theory, 2020, 9 (1) : 1-25. doi: 10.3934/eect.2020014

[6]

María Barbero-Liñán, Manuel de León, David Martín de Diego, Juan C. Marrero, Miguel C. Muñoz-Lecanda. Kinematic reduction and the Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2012, 4 (3) : 207-237. doi: 10.3934/jgm.2012.4.207

[7]

Fabrice Baudoin, Camille Tardif. Hypocoercive estimates on foliations and velocity spherical Brownian motion. Kinetic & Related Models, 2018, 11 (1) : 1-23. doi: 10.3934/krm.2018001

[8]

Chang-Yeol Jung, Alex Mahalov. Wave propagation in random waveguides. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 147-159. doi: 10.3934/dcds.2010.28.147

[9]

Jiří Minarčík, Masato Kimura, Michal Beneš. Comparing motion of curves and hypersurfaces in $ \mathbb{R}^m $. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4815-4826. doi: 10.3934/dcdsb.2019032

[10]

D. G. Aronson, N. V. Mantzaris, Hans Othmer. Wave propagation and blocking in inhomogeneous media. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 843-876. doi: 10.3934/dcds.2005.13.843

[11]

Shangbing Ai, Wenzhang Huang, Zhi-An Wang. Reaction, diffusion and chemotaxis in wave propagation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 1-21. doi: 10.3934/dcdsb.2015.20.1

[12]

Brenton LeMesurier. Modeling thermal effects on nonlinear wave motion in biopolymers by a stochastic discrete nonlinear Schrödinger equation with phase damping. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 317-327. doi: 10.3934/dcdss.2008.1.317

[13]

Tetsuya Ishiwata. On the motion of polygonal curves with asymptotic lines by crystalline curvature flow with bulk effect. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 865-873. doi: 10.3934/dcdss.2011.4.865

[14]

Wenjia Jing, Panagiotis E. Souganidis, Hung V. Tran. Large time average of reachable sets and Applications to Homogenization of interfaces moving with oscillatory spatio-temporal velocity. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 915-939. doi: 10.3934/dcdss.2018055

[15]

Alexander Bobylev, Mirela Vinerean, Åsa Windfäll. Discrete velocity models of the Boltzmann equation and conservation laws. Kinetic & Related Models, 2010, 3 (1) : 35-58. doi: 10.3934/krm.2010.3.35

[16]

Yong Zhou, Zhengguang Guo. Blow up and propagation speed of solutions to the DGH equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 657-670. doi: 10.3934/dcdsb.2009.12.657

[17]

Andrey Shishkov. Waiting time of propagation and the backward motion of interfaces in thin-film flow theory. Conference Publications, 2007, 2007 (Special) : 938-945. doi: 10.3934/proc.2007.2007.938

[18]

Farid Tari. Geometric properties of the integral curves of an implicit differential equation. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 349-364. doi: 10.3934/dcds.2007.17.349

[19]

Charles L. Epstein, Leslie Greengard, Thomas Hagstrom. On the stability of time-domain integral equations for acoustic wave propagation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4367-4382. doi: 10.3934/dcds.2016.36.4367

[20]

Stéphane Heuraux, Filipe da Silva. Simulations on wave propagation in fluctuating fusion plasmas for Reflectometry applications and new developments. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 307-328. doi: 10.3934/dcdss.2012.5.307

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (2)

[Back to Top]