December  2015, 8(6): 1035-1045. doi: 10.3934/dcdss.2015.8.1035

Dynamics of a tethered satellite with variable mass

1. 

National Research Institute of Astronomy and Geophysics, Cairo, Egypt

2. 

Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, Hospital de Marina, 30203-Cartagena, Región de Murcia

3. 

Nonlinear Analysis and Applied Mathematics Research Group (NAAM), Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia, Saudi Arabia

Received  May 2015 Revised  August 2015 Published  November 2015

In this paper, we provide an analytical study regarding the dynamics of a tethered satellite system, when the central gravitational field is generated by a variable mass object. We show that, in general, the equations of motion for the tethered satellite in the general case as well as in satellite approximation become different from the classical ones, provided that variable mass is considered. We also prove that these expressions could be reduced to the classical ones under the first Meshcherskii's law for variable mass. Moreover, we show that Meshcherskii's transformation is not valid for the dynamics of a dumbbell satellite system.
Citation: Elbaz I. Abouelmagd, Juan L. G. Guirao, Aatef Hobiny, Faris Alzahrani. Dynamics of a tethered satellite with variable mass. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1035-1045. doi: 10.3934/dcdss.2015.8.1035
References:
[1]

E. I. Abouelmagd, J. L. G. Guirao and J. A. Vera, Dynamics of a dumbbell satellite under the zonal harmonic effect of an oblate body,, Communications in Nonlinear Science and Numerical Simulation, 20 (2015), 1057.  doi: 10.1016/j.cnsns.2014.06.033.  Google Scholar

[2]

F. Austin, Nonlinear dynamics of free-rotating flexibly connected double-mass space station,, Journal of Spacecraft and Rockets, 2 (1965), 901.   Google Scholar

[3]

G. Avanzini and M. Fedi, Effects of eccentricity of the reference orbit on multi-tethered satellite formations,, Acta Astronautica, 94 (2014), 338.  doi: 10.1016/j.actaastro.2013.03.019.  Google Scholar

[4]

V. V. Beletsky and E. M. Levin, Dynamics of Space Tether Systems,, Univelt, (1993).   Google Scholar

[5]

V. V. Beletsky, Motion of an Artificial Satellite about its Center of Mass,, Israel Program for Scientific Translations, (1966).   Google Scholar

[6]

A. Burov and A. Dugain, Planar oscillations of a vibrating dumbbell-like body in a central field of forces,, Cosmic Research, 49 (2011), 353.  doi: 10.1134/S0010952511040010.  Google Scholar

[7]

A. Burov, I. I. Kosenko and H. Troger, On periodic motions of an orbital dumbbell-shaped body with a cabin-elevator,, Mechanics of Solids, 47 (2012), 269.  doi: 10.3103/S0025654412030028.  Google Scholar

[8]

A. Celletti and V. Sidorenko, Some properties of the dumbbell satellite attitude dynamics,, Celest. Mech. Dyn. Astr., 101 (2008), 105.  doi: 10.1007/s10569-008-9122-0.  Google Scholar

[9]

V. Chobotov, Gravitational excitation of extensible dumbbell satellite,, Journal of Spacecraft and Rockets, 4 (1967), 1295.  doi: 10.2514/3.29074.  Google Scholar

[10]

G. Colombo, E. M. Gaposchkin, M. D. Grossi and G. C. Weiffenbach, The skyhook: A shuttle-borne tool for low-orbital-altitude research,, Meccanica, 10 (1975), 3.  doi: 10.1007/BF02148280.  Google Scholar

[11]

M. L. Cosmo and E. C. Lorenzini, Tethers in Space Handbook,, 3rd Ed., (1997).   Google Scholar

[12]

L. Gang, H. Jing, M. Guangfu and L. Chuanjiang, Nonlinear dynamics and station keeping control of a rotating tethered satellite system in halo orbits,, Chinese Journal of Aeronautics, 26 (2013), 1227.   Google Scholar

[13]

J. L. G. Guirao, J. A. Vera and B. A. Wade, On the periodic solutions of a rigid dumbbell satellite in a circular orbit,, Astrophys Space Sci, 346 (2013), 437.  doi: 10.1007/s10509-013-1456-8.  Google Scholar

[14]

F. C. Hurlbut and J. L. Potter, Tethered aerothermodynamic research needs,, Journal of Spacecraft and Rockets, 28 (1991), 50.  doi: 10.2514/6.1990-533.  Google Scholar

[15]

S. K. Jha and A. K. Shrivastava, Equations of motion of the elliptical restricted problem of three bodies with variable masses,, The Astronomical Journal, 121 (2001), 580.  doi: 10.1086/318006.  Google Scholar

[16]

A. J. Maciejewski, M. Przybylska, L. Simpson and W. Szumiński, Non-integrability of the dumbbell and point mass problem,, Celest. Mech. Dyn. Astr., 117 (2013), 315.  doi: 10.1007/s10569-013-9514-7.  Google Scholar

[17]

I. V. Meshcherskii, Works on the Mechanics of Bodies of Variable Mass,, GITTL, (1952).   Google Scholar

[18]

M. A. Munitsina, Relative equilibrium on the circular Keplerian orbit of the "Dumbbells-Load'' system with unilateral connections,, Automation and Remote Control, 68 (2007), 1476.  doi: 10.1134/S0005117907090020.  Google Scholar

[19]

K. Nakanishi, H. Kojima and T. Watanabe, Trajectories of in-plane periodic solutions of tethered satellite system projected on van der Pol planes,, Acta Astronautica, 68 (2011), 1024.  doi: 10.1016/j.actaastro.2010.09.014.  Google Scholar

[20]

D. D. Nixon, Dynamics of a spinning space station with a counterweight connected by multiple cables,, Journal of Spacecraft and Rockets, 9 (1972), 896.  doi: 10.2514/6.1972-172.  Google Scholar

[21]

M. Pasca and E. Lorenzini, Collection of martian atmospheric dust with a low altitude tethered probe,, in Spaceflight Mechanics 1991; Proceedings of the 1st AAS/AIAA Annual Spaceflight Mechanics Meeting, (1991), 1121.   Google Scholar

[22]

C. D. Pengelley, Preliminary survey of dynamic stability of cable-connected spinning space station,, Journal of Spacecraft and Rockets, 3 (1966), 1456.  doi: 10.2514/3.28677.  Google Scholar

[23]

K. A. Polzin, E. Y. Choueiri, P. Gurfil and N. J. Kasdin, Plasma propulsion options for multiple terrestrial planet finder architectures,, Journal of Spacecraft and Rockets, 39 (2002), 347.  doi: 10.2514/2.3833.  Google Scholar

[24]

M. B. Quadrelli, Dynamics and control of novel orbiting formations with internal dynamics,, Journal of the Astronautical Sciences, 51 (2003), 319.   Google Scholar

[25]

B. Wong and A. Misra, Planar dynamics of variable length multi-tethered spacecraft near collinear Lagrangian points,, Acta Astronautica, 63 (2008), 1178.  doi: 10.1016/j.actaastro.2008.06.022.  Google Scholar

[26]

W. Zhang, F. B. Gao and M. H. Yao, Periodic solutions and stability of a tethered satellite system,, Mechanics Research Communications, 44 (2012), 24.  doi: 10.1016/j.mechrescom.2012.05.004.  Google Scholar

show all references

References:
[1]

E. I. Abouelmagd, J. L. G. Guirao and J. A. Vera, Dynamics of a dumbbell satellite under the zonal harmonic effect of an oblate body,, Communications in Nonlinear Science and Numerical Simulation, 20 (2015), 1057.  doi: 10.1016/j.cnsns.2014.06.033.  Google Scholar

[2]

F. Austin, Nonlinear dynamics of free-rotating flexibly connected double-mass space station,, Journal of Spacecraft and Rockets, 2 (1965), 901.   Google Scholar

[3]

G. Avanzini and M. Fedi, Effects of eccentricity of the reference orbit on multi-tethered satellite formations,, Acta Astronautica, 94 (2014), 338.  doi: 10.1016/j.actaastro.2013.03.019.  Google Scholar

[4]

V. V. Beletsky and E. M. Levin, Dynamics of Space Tether Systems,, Univelt, (1993).   Google Scholar

[5]

V. V. Beletsky, Motion of an Artificial Satellite about its Center of Mass,, Israel Program for Scientific Translations, (1966).   Google Scholar

[6]

A. Burov and A. Dugain, Planar oscillations of a vibrating dumbbell-like body in a central field of forces,, Cosmic Research, 49 (2011), 353.  doi: 10.1134/S0010952511040010.  Google Scholar

[7]

A. Burov, I. I. Kosenko and H. Troger, On periodic motions of an orbital dumbbell-shaped body with a cabin-elevator,, Mechanics of Solids, 47 (2012), 269.  doi: 10.3103/S0025654412030028.  Google Scholar

[8]

A. Celletti and V. Sidorenko, Some properties of the dumbbell satellite attitude dynamics,, Celest. Mech. Dyn. Astr., 101 (2008), 105.  doi: 10.1007/s10569-008-9122-0.  Google Scholar

[9]

V. Chobotov, Gravitational excitation of extensible dumbbell satellite,, Journal of Spacecraft and Rockets, 4 (1967), 1295.  doi: 10.2514/3.29074.  Google Scholar

[10]

G. Colombo, E. M. Gaposchkin, M. D. Grossi and G. C. Weiffenbach, The skyhook: A shuttle-borne tool for low-orbital-altitude research,, Meccanica, 10 (1975), 3.  doi: 10.1007/BF02148280.  Google Scholar

[11]

M. L. Cosmo and E. C. Lorenzini, Tethers in Space Handbook,, 3rd Ed., (1997).   Google Scholar

[12]

L. Gang, H. Jing, M. Guangfu and L. Chuanjiang, Nonlinear dynamics and station keeping control of a rotating tethered satellite system in halo orbits,, Chinese Journal of Aeronautics, 26 (2013), 1227.   Google Scholar

[13]

J. L. G. Guirao, J. A. Vera and B. A. Wade, On the periodic solutions of a rigid dumbbell satellite in a circular orbit,, Astrophys Space Sci, 346 (2013), 437.  doi: 10.1007/s10509-013-1456-8.  Google Scholar

[14]

F. C. Hurlbut and J. L. Potter, Tethered aerothermodynamic research needs,, Journal of Spacecraft and Rockets, 28 (1991), 50.  doi: 10.2514/6.1990-533.  Google Scholar

[15]

S. K. Jha and A. K. Shrivastava, Equations of motion of the elliptical restricted problem of three bodies with variable masses,, The Astronomical Journal, 121 (2001), 580.  doi: 10.1086/318006.  Google Scholar

[16]

A. J. Maciejewski, M. Przybylska, L. Simpson and W. Szumiński, Non-integrability of the dumbbell and point mass problem,, Celest. Mech. Dyn. Astr., 117 (2013), 315.  doi: 10.1007/s10569-013-9514-7.  Google Scholar

[17]

I. V. Meshcherskii, Works on the Mechanics of Bodies of Variable Mass,, GITTL, (1952).   Google Scholar

[18]

M. A. Munitsina, Relative equilibrium on the circular Keplerian orbit of the "Dumbbells-Load'' system with unilateral connections,, Automation and Remote Control, 68 (2007), 1476.  doi: 10.1134/S0005117907090020.  Google Scholar

[19]

K. Nakanishi, H. Kojima and T. Watanabe, Trajectories of in-plane periodic solutions of tethered satellite system projected on van der Pol planes,, Acta Astronautica, 68 (2011), 1024.  doi: 10.1016/j.actaastro.2010.09.014.  Google Scholar

[20]

D. D. Nixon, Dynamics of a spinning space station with a counterweight connected by multiple cables,, Journal of Spacecraft and Rockets, 9 (1972), 896.  doi: 10.2514/6.1972-172.  Google Scholar

[21]

M. Pasca and E. Lorenzini, Collection of martian atmospheric dust with a low altitude tethered probe,, in Spaceflight Mechanics 1991; Proceedings of the 1st AAS/AIAA Annual Spaceflight Mechanics Meeting, (1991), 1121.   Google Scholar

[22]

C. D. Pengelley, Preliminary survey of dynamic stability of cable-connected spinning space station,, Journal of Spacecraft and Rockets, 3 (1966), 1456.  doi: 10.2514/3.28677.  Google Scholar

[23]

K. A. Polzin, E. Y. Choueiri, P. Gurfil and N. J. Kasdin, Plasma propulsion options for multiple terrestrial planet finder architectures,, Journal of Spacecraft and Rockets, 39 (2002), 347.  doi: 10.2514/2.3833.  Google Scholar

[24]

M. B. Quadrelli, Dynamics and control of novel orbiting formations with internal dynamics,, Journal of the Astronautical Sciences, 51 (2003), 319.   Google Scholar

[25]

B. Wong and A. Misra, Planar dynamics of variable length multi-tethered spacecraft near collinear Lagrangian points,, Acta Astronautica, 63 (2008), 1178.  doi: 10.1016/j.actaastro.2008.06.022.  Google Scholar

[26]

W. Zhang, F. B. Gao and M. H. Yao, Periodic solutions and stability of a tethered satellite system,, Mechanics Research Communications, 44 (2012), 24.  doi: 10.1016/j.mechrescom.2012.05.004.  Google Scholar

[1]

Jifeng Chu, Zaitao Liang, Pedro J. Torres, Zhe Zhou. Existence and stability of periodic oscillations of a rigid dumbbell satellite around its center of mass. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2669-2685. doi: 10.3934/dcdsb.2017130

[2]

Elbaz I. Abouelmagd, Juan L. G. Guirao, Aatef Hobiny, Faris Alzahrani. Stability of equilibria points for a dumbbell satellite when the central body is oblate spheroid. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1047-1054. doi: 10.3934/dcdss.2015.8.1047

[3]

Daniel Núñez, Pedro J. Torres. Periodic solutions of twist type of an earth satellite equation. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 303-306. doi: 10.3934/dcds.2001.7.303

[4]

Alexandr A. Zevin, Mark A. Pinsky. Qualitative analysis of periodic oscillations of an earth satellite with magnetic attitude stabilization. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 293-297. doi: 10.3934/dcds.2000.6.293

[5]

David Mumford, Peter W. Michor. On Euler's equation and 'EPDiff'. Journal of Geometric Mechanics, 2013, 5 (3) : 319-344. doi: 10.3934/jgm.2013.5.319

[6]

Eduard Feireisl, Josef Málek, Antonín Novotný. Navier's slip and incompressible limits in domains with variable bottoms. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 427-460. doi: 10.3934/dcdss.2008.1.427

[7]

Marcus A. Khuri. On the local solvability of Darboux's equation. Conference Publications, 2009, 2009 (Special) : 451-456. doi: 10.3934/proc.2009.2009.451

[8]

Xian Zhang, Vinesh Nishawala, Martin Ostoja-Starzewski. Anti-plane shear Lamb's problem on random mass density fields with fractal and Hurst effects. Evolution Equations & Control Theory, 2019, 8 (1) : 231-246. doi: 10.3934/eect.2019013

[9]

Wafa Hamrouni, Ali Abdennadher. Random walk's models for fractional diffusion equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2509-2530. doi: 10.3934/dcdsb.2016058

[10]

Kevin Zumbrun. L resolvent bounds for steady Boltzmann's Equation. Kinetic & Related Models, 2017, 10 (4) : 1255-1257. doi: 10.3934/krm.2017048

[11]

Darya V. Verveyko, Andrey Yu. Verisokin. Application of He's method to the modified Rayleigh equation. Conference Publications, 2011, 2011 (Special) : 1423-1431. doi: 10.3934/proc.2011.2011.1423

[12]

J. Leonel Rocha, Sandra M. Aleixo. Dynamical analysis in growth models: Blumberg's equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 783-795. doi: 10.3934/dcdsb.2013.18.783

[13]

Laurent Desvillettes, Clément Mouhot, Cédric Villani. Celebrating Cercignani's conjecture for the Boltzmann equation. Kinetic & Related Models, 2011, 4 (1) : 277-294. doi: 10.3934/krm.2011.4.277

[14]

S. Jiménez, Pedro J. Zufiria. Characterizing chaos in a type of fractional Duffing's equation. Conference Publications, 2015, 2015 (special) : 660-669. doi: 10.3934/proc.2015.0660

[15]

Luca Lussardi. On a Poisson's equation arising from magnetism. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 769-772. doi: 10.3934/dcdss.2015.8.769

[16]

Dirk Pauly. On Maxwell's and Poincaré's constants. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 607-618. doi: 10.3934/dcdss.2015.8.607

[17]

Amit Einav. On Villani's conjecture concerning entropy production for the Kac Master equation. Kinetic & Related Models, 2011, 4 (2) : 479-497. doi: 10.3934/krm.2011.4.479

[18]

Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032

[19]

Philippe Laurençot, Barbara Niethammer, Juan J.L. Velázquez. Oscillatory dynamics in Smoluchowski's coagulation equation with diagonal kernel. Kinetic & Related Models, 2018, 11 (4) : 933-952. doi: 10.3934/krm.2018037

[20]

Anatoli Babin, Alexander Figotin. Newton's law for a trajectory of concentration of solutions to nonlinear Schrodinger equation. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1685-1718. doi: 10.3934/cpaa.2014.13.1685

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (1)

[Back to Top]