December  2015, 8(6): 1065-1077. doi: 10.3934/dcdss.2015.8.1065

A new solution method for nonlinear fractional integro-differential equations

1. 

Department of Mathematics, Mustafa Kemal University, 31000, Hatay, Turkey

Received  April 2015 Revised  August 2015 Published  December 2015

The aim of this paper is to obtain approximate solution of a class of nonlinear fractional Fredholm integro-differential equations by means of sinc-collocation method which is not used for solving them in the literature before. The fractional derivatives are defined in the Caputo sense often used in fractional calculus. The important feature of the present study is that obtained results are stated as two new theorems. The introduced method is tested on some nonlinear problems and it seems that the method is a very efficient and powerful tool to obtain numerical solutions of nonlinear fractional integro-differential equations.
Citation: Sertan Alkan. A new solution method for nonlinear fractional integro-differential equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1065-1077. doi: 10.3934/dcdss.2015.8.1065
References:
[1]

A. Arikoglu and I. Ozkol, Solution of fractional integro-differential equations by using fractional differential transform method, Chaos, Solitons & Fractals, 40 (2009), 521-529. doi: 10.1016/j.chaos.2007.08.001.  Google Scholar

[2]

R. L. Bagley and J. P. Torvik, On the fractional calculus model of viscoelastic behavior, Journal of Rheology, 30 (1986), 133-155. doi: 10.1122/1.549887.  Google Scholar

[3]

M. El-Gamel and A. Zayed, Sinc-Galerkin method for solving nonlinear boundary-value problems, Comput. Math. Appl., 48 (2004), 1285-1298. doi: 10.1016/j.camwa.2004.10.021.  Google Scholar

[4]

E. Hesameddini and E. Asadolahifard, Solving Systems of Linear Volterra Integro-Differential Equations by Using Sinc-Collocation Method, International Journal of Mathematical Engineering and Science, 2 (2013), 1-9. Google Scholar

[5]

L. Huang, X. F. Li, Y. Zhao and X. Y. Duan, Approximate solution of fractional integro-differential equations by Taylor expansion method, Computers & Mathematics with Applications, 62 (2011), 1127-1134. doi: 10.1016/j.camwa.2011.03.037.  Google Scholar

[6]

J. Lund and K. L. Bowers, Sinc Methods for Quadrature and Differential Equations, SIAM, Englewood Cliffs, 1992. doi: 10.1137/1.9781611971637.  Google Scholar

[7]

F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation, Applied Mathematics Letters, 9 (1996), 23-28. doi: 10.1016/0893-9659(96)00089-4.  Google Scholar

[8]

A. Mohsen and M. El-Gamel, On the Galerkin and collocation methods for two-point boundary value problems using sinc bases, Computers & Mathematics with Applications, 56 (2008), 930-941. doi: 10.1016/j.camwa.2008.01.023.  Google Scholar

[9]

A. Mohsen and M. El-Gamel, Sinc-collocation algorithm for solving nonlinear fredholm integro-differential equations, British Journal of Mathematics & Computer Science, 4 (2014), 1693-1700. doi: 10.9734/BJMCS/2014/8247.  Google Scholar

[10]

A. Mohsen and M. El-Gamel, A Sinc-Collocation method for the linear Fredholm integro-differential equations, Zeitschrift für angewandte Mathematik und Physik, 58 (2007), 380-390. doi: 10.1007/s00033-006-5124-5.  Google Scholar

[11]

S. Momani and M. A. Noor, Numerical methods for fourth-order fractional integro-differential equations, Applied Mathematics and Computation, 182 (2006), 754-760. doi: 10.1016/j.amc.2006.04.041.  Google Scholar

[12]

S. Momani and R. Qaralleh, An efficient method for solving systems of fractional integro-differentialequations, Computers & Mathematics with Applications, 52 (2006), 459-470. doi: 10.1016/j.camwa.2006.02.011.  Google Scholar

[13]

Y. Nawaz, Variational iteration method and homotopy perturbation method for fourth-order fractional integro-differential equations, Computers & Mathematics with Applications, 61 (2011), 2330-2341. doi: 10.1016/j.camwa.2010.10.004.  Google Scholar

[14]

D. Nazari and S. Shahmorad, Application of the fractional differential transform method to fractional-order integro-differential equations with nonlocal boundary conditions, Journal of Computational and Applied Mathematics, 234 (2010), 883-891. doi: 10.1016/j.cam.2010.01.053.  Google Scholar

[15]

I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.  Google Scholar

[16]

J. Rashidinia and M. Nabati, Sinc-Galerkin and Sinc-Collocation methods in the solution of nonlinear two-point boundary value problems, Computational and Applied Mathematics, 32 (2013), 315-330. doi: 10.1007/s40314-013-0021-y.  Google Scholar

[17]

F. Riewe, Mechanics with fractional derivatives, Physical Review E, 55 (1997), 3581-3592. doi: 10.1103/PhysRevE.55.3581.  Google Scholar

[18]

J. Sabatier, O. P. Agrawal and J. T. Machado, Advances in Fractional Calculus, Springer, Dordrecht, 2007. doi: 10.1007/978-1-4020-6042-7.  Google Scholar

[19]

R. K. Saedd and H. M. Sdeq, Solving a system of linear fredholm fractional integro-differential equations using homotopy perturbation method, Australian Journal of Basic and Applied Sciences, 4 (2010), 633-638. Google Scholar

[20]

A. Secer, S. Alkan, M. A. Akinlar and M. Bayram, Sinc-Galerkin method for approximate solutions of fractional order boundary value problems, Boundary Value Problems, 2013 (2013), 281-294.  Google Scholar

[21]

M. Zarebnia and N. Zeinab, Solution of linear Volterra integro-differential equations via Sinc functions, International Journal of Applied Mathematics and Computation, 2 (2009), 1-10. Google Scholar

[22]

M. Zarebnia and M. G. A. Abadi, Numerical solution of system of nonlinear second-order integro-differential equations, Computers & Mathematics with Applications, 60 (2010), 591-601. doi: 10.1016/j.camwa.2010.05.005.  Google Scholar

show all references

References:
[1]

A. Arikoglu and I. Ozkol, Solution of fractional integro-differential equations by using fractional differential transform method, Chaos, Solitons & Fractals, 40 (2009), 521-529. doi: 10.1016/j.chaos.2007.08.001.  Google Scholar

[2]

R. L. Bagley and J. P. Torvik, On the fractional calculus model of viscoelastic behavior, Journal of Rheology, 30 (1986), 133-155. doi: 10.1122/1.549887.  Google Scholar

[3]

M. El-Gamel and A. Zayed, Sinc-Galerkin method for solving nonlinear boundary-value problems, Comput. Math. Appl., 48 (2004), 1285-1298. doi: 10.1016/j.camwa.2004.10.021.  Google Scholar

[4]

E. Hesameddini and E. Asadolahifard, Solving Systems of Linear Volterra Integro-Differential Equations by Using Sinc-Collocation Method, International Journal of Mathematical Engineering and Science, 2 (2013), 1-9. Google Scholar

[5]

L. Huang, X. F. Li, Y. Zhao and X. Y. Duan, Approximate solution of fractional integro-differential equations by Taylor expansion method, Computers & Mathematics with Applications, 62 (2011), 1127-1134. doi: 10.1016/j.camwa.2011.03.037.  Google Scholar

[6]

J. Lund and K. L. Bowers, Sinc Methods for Quadrature and Differential Equations, SIAM, Englewood Cliffs, 1992. doi: 10.1137/1.9781611971637.  Google Scholar

[7]

F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation, Applied Mathematics Letters, 9 (1996), 23-28. doi: 10.1016/0893-9659(96)00089-4.  Google Scholar

[8]

A. Mohsen and M. El-Gamel, On the Galerkin and collocation methods for two-point boundary value problems using sinc bases, Computers & Mathematics with Applications, 56 (2008), 930-941. doi: 10.1016/j.camwa.2008.01.023.  Google Scholar

[9]

A. Mohsen and M. El-Gamel, Sinc-collocation algorithm for solving nonlinear fredholm integro-differential equations, British Journal of Mathematics & Computer Science, 4 (2014), 1693-1700. doi: 10.9734/BJMCS/2014/8247.  Google Scholar

[10]

A. Mohsen and M. El-Gamel, A Sinc-Collocation method for the linear Fredholm integro-differential equations, Zeitschrift für angewandte Mathematik und Physik, 58 (2007), 380-390. doi: 10.1007/s00033-006-5124-5.  Google Scholar

[11]

S. Momani and M. A. Noor, Numerical methods for fourth-order fractional integro-differential equations, Applied Mathematics and Computation, 182 (2006), 754-760. doi: 10.1016/j.amc.2006.04.041.  Google Scholar

[12]

S. Momani and R. Qaralleh, An efficient method for solving systems of fractional integro-differentialequations, Computers & Mathematics with Applications, 52 (2006), 459-470. doi: 10.1016/j.camwa.2006.02.011.  Google Scholar

[13]

Y. Nawaz, Variational iteration method and homotopy perturbation method for fourth-order fractional integro-differential equations, Computers & Mathematics with Applications, 61 (2011), 2330-2341. doi: 10.1016/j.camwa.2010.10.004.  Google Scholar

[14]

D. Nazari and S. Shahmorad, Application of the fractional differential transform method to fractional-order integro-differential equations with nonlocal boundary conditions, Journal of Computational and Applied Mathematics, 234 (2010), 883-891. doi: 10.1016/j.cam.2010.01.053.  Google Scholar

[15]

I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.  Google Scholar

[16]

J. Rashidinia and M. Nabati, Sinc-Galerkin and Sinc-Collocation methods in the solution of nonlinear two-point boundary value problems, Computational and Applied Mathematics, 32 (2013), 315-330. doi: 10.1007/s40314-013-0021-y.  Google Scholar

[17]

F. Riewe, Mechanics with fractional derivatives, Physical Review E, 55 (1997), 3581-3592. doi: 10.1103/PhysRevE.55.3581.  Google Scholar

[18]

J. Sabatier, O. P. Agrawal and J. T. Machado, Advances in Fractional Calculus, Springer, Dordrecht, 2007. doi: 10.1007/978-1-4020-6042-7.  Google Scholar

[19]

R. K. Saedd and H. M. Sdeq, Solving a system of linear fredholm fractional integro-differential equations using homotopy perturbation method, Australian Journal of Basic and Applied Sciences, 4 (2010), 633-638. Google Scholar

[20]

A. Secer, S. Alkan, M. A. Akinlar and M. Bayram, Sinc-Galerkin method for approximate solutions of fractional order boundary value problems, Boundary Value Problems, 2013 (2013), 281-294.  Google Scholar

[21]

M. Zarebnia and N. Zeinab, Solution of linear Volterra integro-differential equations via Sinc functions, International Journal of Applied Mathematics and Computation, 2 (2009), 1-10. Google Scholar

[22]

M. Zarebnia and M. G. A. Abadi, Numerical solution of system of nonlinear second-order integro-differential equations, Computers & Mathematics with Applications, 60 (2010), 591-601. doi: 10.1016/j.camwa.2010.05.005.  Google Scholar

[1]

Huy Tuan Nguyen, Huu Can Nguyen, Renhai Wang, Yong Zhou. Initial value problem for fractional Volterra integro-differential equations with Caputo derivative. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021030

[2]

Yin Yang, Sujuan Kang, Vasiliy I. Vasil'ev. The Jacobi spectral collocation method for fractional integro-differential equations with non-smooth solutions. Electronic Research Archive, 2020, 28 (3) : 1161-1189. doi: 10.3934/era.2020064

[3]

Imtiaz Ahmad, Siraj-ul-Islam, Mehnaz, Sakhi Zaman. Local meshless differential quadrature collocation method for time-fractional PDEs. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : 2641-2654. doi: 10.3934/dcdss.2020223

[4]

Frederic Abergel, Remi Tachet. A nonlinear partial integro-differential equation from mathematical finance. Discrete & Continuous Dynamical Systems, 2010, 27 (3) : 907-917. doi: 10.3934/dcds.2010.27.907

[5]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[6]

Giuseppe Maria Coclite, Mario Michele Coclite. Positive solutions of an integro-differential equation in all space with singular nonlinear term. Discrete & Continuous Dynamical Systems, 2008, 22 (4) : 885-907. doi: 10.3934/dcds.2008.22.885

[7]

Ji Shu, Linyan Li, Xin Huang, Jian Zhang. Limiting behavior of fractional stochastic integro-Differential equations on unbounded domains. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020044

[8]

Ramasamy Subashini, Chokkalingam Ravichandran, Kasthurisamy Jothimani, Haci Mehmet Baskonus. Existence results of Hilfer integro-differential equations with fractional order. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 911-923. doi: 10.3934/dcdss.2020053

[9]

Tonny Paul, A. Anguraj. Existence and uniqueness of nonlinear impulsive integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1191-1198. doi: 10.3934/dcdsb.2006.6.1191

[10]

Walter Allegretto, John R. Cannon, Yanping Lin. A parabolic integro-differential equation arising from thermoelastic contact. Discrete & Continuous Dynamical Systems, 1997, 3 (2) : 217-234. doi: 10.3934/dcds.1997.3.217

[11]

Narcisa Apreutesei, Nikolai Bessonov, Vitaly Volpert, Vitali Vougalter. Spatial structures and generalized travelling waves for an integro-differential equation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 537-557. doi: 10.3934/dcdsb.2010.13.537

[12]

Shihchung Chiang. Numerical optimal unbounded control with a singular integro-differential equation as a constraint. Conference Publications, 2013, 2013 (special) : 129-137. doi: 10.3934/proc.2013.2013.129

[13]

Samir K. Bhowmik, Dugald B. Duncan, Michael Grinfeld, Gabriel J. Lord. Finite to infinite steady state solutions, bifurcations of an integro-differential equation. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 57-71. doi: 10.3934/dcdsb.2011.16.57

[14]

Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021025

[15]

Michel Chipot, Senoussi Guesmia. On a class of integro-differential problems. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1249-1262. doi: 10.3934/cpaa.2010.9.1249

[16]

Eduardo Cuesta. Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations. Conference Publications, 2007, 2007 (Special) : 277-285. doi: 10.3934/proc.2007.2007.277

[17]

Priscila Santos Ramos, J. Vanterler da C. Sousa, E. Capelas de Oliveira. Existence and uniqueness of mild solutions for quasi-linear fractional integro-differential equations. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020100

[18]

Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021016

[19]

Zhong-Qing Wang, Li-Lian Wang. A Legendre-Gauss collocation method for nonlinear delay differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 685-708. doi: 10.3934/dcdsb.2010.13.685

[20]

Dariusz Idczak, Stanisław Walczak. Necessary optimality conditions for an integro-differential Bolza problem via Dubovitskii-Milyutin method. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2281-2292. doi: 10.3934/dcdsb.2019095

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (200)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]