December  2015, 8(6): 1079-1101. doi: 10.3934/dcdss.2015.8.1079

A survey on Navier-Stokes models with delays: Existence, uniqueness and asymptotic behavior of solutions

1. 

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Campus Reina Mercedes, Apdo. de Correos 1160, 41080 Sevilla

2. 

221 Parker Hall, Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849

Received  June 2015 Revised  September 2015 Published  December 2015

In this survey paper we review several aspects related to Navier-Stokes models when some hereditary characteristics (constant, distributed or variable delay, memory, etc) appear in the formulation. First some results concerning existence and/or uniqueness of solutions are established. Next the local stability analysis of steady-state solutions is studied by using the theory of Lyapunov functions, the Razumikhin-Lyapunov technique and also by constructing appropriate Lyapunov functionals. A Gronwall-like lemma for delay equations is also exploited to provide some stability results. In the end we also include some comments concerning the global asymptotic analysis of the model, as well as some open questions and future lines for research.
Citation: Tomás Caraballo, Xiaoying Han. A survey on Navier-Stokes models with delays: Existence, uniqueness and asymptotic behavior of solutions. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1079-1101. doi: 10.3934/dcdss.2015.8.1079
References:
[1]

M. Anguiano, T. Caraballo, J. Real and J. Valero, Pullback attractors for nonautonomous dynamical systems,, Differential and Difference Eqns. with Apps., 47 (2013), 217.  doi: 10.1007/978-1-4614-7333-6_15.  Google Scholar

[2]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, Amsterdam, (1992).   Google Scholar

[3]

V. Barbu and S. S. Sritharan, Navier-Stokes equation with hereditary viscosity,, Z. angew. Math. Phys., 54 (2003), 449.  doi: 10.1007/s00033-003-1087-y.  Google Scholar

[4]

A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems,, Vol. I, (1992).   Google Scholar

[5]

T. Caraballo and X. Han, Stability of stationary solutions to 2D-Navier-Stokes models with delays,, Dyn. Partial Differ. Equ., 11 (2014), 345.  doi: 10.4310/DPDE.2014.v11.n4.a3.  Google Scholar

[6]

T. Caraballo, J. A. Langa and J. C. Robinson, Attractors for differential equations with variable delays,, J. Math. Anal. Appl., 260 (2001), 421.  doi: 10.1006/jmaa.2000.7464.  Google Scholar

[7]

T. Caraballo, K. Liu and A. Truman, Stochastic functional partial differential equations: Existence, uniqueness and asymptotic decay property,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (2000), 1775.  doi: 10.1098/rspa.2000.0586.  Google Scholar

[8]

T. Caraballo, P. Marín-Rubio and J. Valero, Autonomous and non-autonomous attractors for differential equations with delays,, J. Differential Equations, 208 (2005), 9.  doi: 10.1016/j.jde.2003.09.008.  Google Scholar

[9]

T. Caraballo, F. Morillas and J. Valero, On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems,, Discrete Contin. Dyn. Syst., 34 (2014), 51.  doi: 10.3934/dcds.2014.34.51.  Google Scholar

[10]

T. Caraballo, F. Morillas and J. Valero, Random attractors for stochastic lattice systems with non-Lipschitz nonlinearity,, J. Difference Equ. Appl., 17 (2011), 161.  doi: 10.1080/10236198.2010.549010.  Google Scholar

[11]

T. Caraballo and J. Real, Navier-Stokes equations with delays,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2441.  doi: 10.1098/rspa.2001.0807.  Google Scholar

[12]

T. Caraballo and J. Real, Asymptotic behaviour of Navier-Stokes equations with delays,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 3181.  doi: 10.1098/rspa.2003.1166.  Google Scholar

[13]

T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays,, J. Differential Equations, 205 (2004), 271.  doi: 10.1016/j.jde.2004.04.012.  Google Scholar

[14]

T. Caraballo, J. Real and L. Shaikhet, Method of Lyapunov functionals construction in stability of delay evolution equations,, J. Math. Anal. Appl., 334 (2007), 1130.  doi: 10.1016/j.jmaa.2007.01.038.  Google Scholar

[15]

D. Cheban, P. E. Kloeden and B. Schmalfuss, The relationship between pullback, forwards and global attractors of nonautonomous dynamical systems,, Nonlinear Dynamics and Systems Theory, 2 (2002), 125.   Google Scholar

[16]

H. Chen, Asymptotic behavior of stochastic two-dimensional Navier-Stokes equations with delays,, Proc. Indian Acad. Sci. (Math. Sci.), 122 (2012), 283.  doi: 10.1007/s12044-012-0071-x.  Google Scholar

[17]

V. Chepyzhov and M. Vishik, Attractors for Equations of Mathematical Physics,, American Mathematical Society Colloquium Publications, (2002).   Google Scholar

[18]

P. Constantin and C. Foias, Navier Stokes Equations,, The University of Chicago Press, (1988).   Google Scholar

[19]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, Probability Theory and Related Fields, 100 (1994), 365.  doi: 10.1007/BF01193705.  Google Scholar

[20]

H. Crauel, A. Debussche and F. Flandoli, Random attractors,, J. Dyn. Diff. Eq., 9 (1995), 307.  doi: 10.1007/BF02219225.  Google Scholar

[21]

J. García-Luengo, P. Marín-Rubio and G. Planas, Attractors for a double time-delayed 2D-Navier-Stokes model,, Discret Cont. Dyn. Syst., 34 (2014), 4085.  doi: 10.3934/dcds.2014.34.4085.  Google Scholar

[22]

J. García-Luengo, P. Marín-Rubio and J. Real, Regularity of pullback attractors and attraction in $H^1$ in arbitrarily large finite intervals for 2D Navier-Stokes with infinite delay,, Discret Cont. Dyn. Syst., 34 (2014), 181.  doi: 10.3934/dcds.2014.34.181.  Google Scholar

[23]

J. García-Luengo, P. Marín-Rubio, J. Real and J. Robinson, Pullback attractors for the non-autonomous 2D Navier-Stokes equations for minimally regular forcing,, Discret Cont. Dyn. Syst., 34 (2014), 203.  doi: 10.3934/dcds.2014.34.203.  Google Scholar

[24]

J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors for 2D Navier-Stokes equations with delays and their regularity,, Adv. Nonlinear Stud., 13 (2013), 331.   Google Scholar

[25]

S. M. Guzzo and G. Planas, On a class of three dimensional Navier-Stokes equations with bounded delay,, Discret Cont. Dyn. Syst. Series B, 16 (2011), 225.  doi: 10.3934/dcdsb.2011.16.225.  Google Scholar

[26]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Math. Surveys and Monographs, (1988).   Google Scholar

[27]

X. Han, Exponential attractors for lattice dynamical systems in weighted spaces,, Discrete Contin. Dyn. Syst., 31 (2011), 445.  doi: 10.3934/dcds.2011.31.445.  Google Scholar

[28]

X. Han, Asymptotic behaviors for second order stochastic lattice dynamical systems on $\mathbbZ^k$ in weighted spaces,, J. Math. Anal. Appl., 397 (2013), 242.  doi: 10.1016/j.jmaa.2012.07.015.  Google Scholar

[29]

P. E. Kloeden and M. Rasmussem, Nonautonomous Dynamical Systems,, American Mathematical Society, (2011).  doi: 10.1090/surv/176.  Google Scholar

[30]

P. E. Kloeden, Pullback attractors in nonautonomous difference equations,, J. Difference Eqns. Appl., 6 (2000), 33.  doi: 10.1080/10236190008808212.  Google Scholar

[31]

P. E. Kloeden and D. J. Stonier, Cocycle attractors in nonautonomously perturbed differential equations,, Dynamics Continuous Discrete and Impulsive Systems, 4 (1998), 211.   Google Scholar

[32]

P. E. Kloeden and B. Schmalfuss, Nonautonomous systems, cocycle attractors and variable time-step discretization,, Numer. Algorithms, 14 (1997), 141.  doi: 10.1023/A:1019156812251.  Google Scholar

[33]

V. B. Kolmanovskii and L. E. Shaikhet, General method of Lyapunov functionals construction for stability investigations of stochastic difference equations,, in Dynamical Systems and Applications, 4 (1995), 397.  doi: 10.1142/9789812796417_0026.  Google Scholar

[34]

O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations,, Cambridge, (1991).  doi: 10.1017/CBO9780511569418.  Google Scholar

[35]

J. L. Lions, Quelques Méthodes de Résolutions des Probèmes aux Limites non Linéaires,, Paris; Dunod, (1969).   Google Scholar

[36]

J. Málek and D. Pražák, Large time behavior via the Method of l-trajectories,, J. Diferential Equations, 181 (2002), 243.  doi: 10.1006/jdeq.2001.4087.  Google Scholar

[37]

P. Marín-Rubio, J. Real and J. Valero, Pullback attractors for a two-dimensional Navier-Stokes model in an infinite delay case,, Nonlinear Analysis, 74 (2011), 2012.  doi: 10.1016/j.na.2010.11.008.  Google Scholar

[38]

B. S. Razumikhin, Application of Liapunov's method to problems in the stability of systems with a delay,, Automat. i Telemeh., 21 (1960), 740.   Google Scholar

[39]

B. Schmalfuß, Backward cocycle and attractors of stochastic differential equations,, in International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behaviour (eds. V. Reitmann, (1992), 185.   Google Scholar

[40]

G. Sell, Non-autonomous differential equations and topological dynamics I,, Trans. Amer. Math. Soc., 127 (1967), 241.   Google Scholar

[41]

T. Taniguchi, The exponential behavior of Navier-Stokes equations with time delay external force,, Discrete Contin. Dyn. Syst., 12 (2005), 997.  doi: 10.3934/dcds.2005.12.997.  Google Scholar

[42]

R. Temam, Navier-Stokes equations, Theory and Numerical Analysis,, 2nd. ed., (1979).   Google Scholar

[43]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1988).  doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[44]

R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis,, 2nd Ed., (1995).  doi: 10.1137/1.9781611970050.  Google Scholar

[45]

L. Wan and Q. Zhou, Asymptotic behaviors of stochastic two-dimensional Navier-Stokes equations with finite memory,, Journal of Mathematical Physics, 52 (2011).  doi: 10.1063/1.3574630.  Google Scholar

[46]

S. Zhou and X. Han, Uniform exponential attractors for non-autonomous KGS and Zakharov lattice systems with quasiperiodic external forces,, Nonlinear Anal., 78 (2013), 141.  doi: 10.1016/j.na.2012.10.001.  Google Scholar

show all references

References:
[1]

M. Anguiano, T. Caraballo, J. Real and J. Valero, Pullback attractors for nonautonomous dynamical systems,, Differential and Difference Eqns. with Apps., 47 (2013), 217.  doi: 10.1007/978-1-4614-7333-6_15.  Google Scholar

[2]

A. V. Babin and M. I. Vishik, Attractors of Evolution Equations,, Amsterdam, (1992).   Google Scholar

[3]

V. Barbu and S. S. Sritharan, Navier-Stokes equation with hereditary viscosity,, Z. angew. Math. Phys., 54 (2003), 449.  doi: 10.1007/s00033-003-1087-y.  Google Scholar

[4]

A. Bensoussan, G. Da Prato, M. C. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems,, Vol. I, (1992).   Google Scholar

[5]

T. Caraballo and X. Han, Stability of stationary solutions to 2D-Navier-Stokes models with delays,, Dyn. Partial Differ. Equ., 11 (2014), 345.  doi: 10.4310/DPDE.2014.v11.n4.a3.  Google Scholar

[6]

T. Caraballo, J. A. Langa and J. C. Robinson, Attractors for differential equations with variable delays,, J. Math. Anal. Appl., 260 (2001), 421.  doi: 10.1006/jmaa.2000.7464.  Google Scholar

[7]

T. Caraballo, K. Liu and A. Truman, Stochastic functional partial differential equations: Existence, uniqueness and asymptotic decay property,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456 (2000), 1775.  doi: 10.1098/rspa.2000.0586.  Google Scholar

[8]

T. Caraballo, P. Marín-Rubio and J. Valero, Autonomous and non-autonomous attractors for differential equations with delays,, J. Differential Equations, 208 (2005), 9.  doi: 10.1016/j.jde.2003.09.008.  Google Scholar

[9]

T. Caraballo, F. Morillas and J. Valero, On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems,, Discrete Contin. Dyn. Syst., 34 (2014), 51.  doi: 10.3934/dcds.2014.34.51.  Google Scholar

[10]

T. Caraballo, F. Morillas and J. Valero, Random attractors for stochastic lattice systems with non-Lipschitz nonlinearity,, J. Difference Equ. Appl., 17 (2011), 161.  doi: 10.1080/10236198.2010.549010.  Google Scholar

[11]

T. Caraballo and J. Real, Navier-Stokes equations with delays,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2441.  doi: 10.1098/rspa.2001.0807.  Google Scholar

[12]

T. Caraballo and J. Real, Asymptotic behaviour of Navier-Stokes equations with delays,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), 3181.  doi: 10.1098/rspa.2003.1166.  Google Scholar

[13]

T. Caraballo and J. Real, Attractors for 2D-Navier-Stokes models with delays,, J. Differential Equations, 205 (2004), 271.  doi: 10.1016/j.jde.2004.04.012.  Google Scholar

[14]

T. Caraballo, J. Real and L. Shaikhet, Method of Lyapunov functionals construction in stability of delay evolution equations,, J. Math. Anal. Appl., 334 (2007), 1130.  doi: 10.1016/j.jmaa.2007.01.038.  Google Scholar

[15]

D. Cheban, P. E. Kloeden and B. Schmalfuss, The relationship between pullback, forwards and global attractors of nonautonomous dynamical systems,, Nonlinear Dynamics and Systems Theory, 2 (2002), 125.   Google Scholar

[16]

H. Chen, Asymptotic behavior of stochastic two-dimensional Navier-Stokes equations with delays,, Proc. Indian Acad. Sci. (Math. Sci.), 122 (2012), 283.  doi: 10.1007/s12044-012-0071-x.  Google Scholar

[17]

V. Chepyzhov and M. Vishik, Attractors for Equations of Mathematical Physics,, American Mathematical Society Colloquium Publications, (2002).   Google Scholar

[18]

P. Constantin and C. Foias, Navier Stokes Equations,, The University of Chicago Press, (1988).   Google Scholar

[19]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, Probability Theory and Related Fields, 100 (1994), 365.  doi: 10.1007/BF01193705.  Google Scholar

[20]

H. Crauel, A. Debussche and F. Flandoli, Random attractors,, J. Dyn. Diff. Eq., 9 (1995), 307.  doi: 10.1007/BF02219225.  Google Scholar

[21]

J. García-Luengo, P. Marín-Rubio and G. Planas, Attractors for a double time-delayed 2D-Navier-Stokes model,, Discret Cont. Dyn. Syst., 34 (2014), 4085.  doi: 10.3934/dcds.2014.34.4085.  Google Scholar

[22]

J. García-Luengo, P. Marín-Rubio and J. Real, Regularity of pullback attractors and attraction in $H^1$ in arbitrarily large finite intervals for 2D Navier-Stokes with infinite delay,, Discret Cont. Dyn. Syst., 34 (2014), 181.  doi: 10.3934/dcds.2014.34.181.  Google Scholar

[23]

J. García-Luengo, P. Marín-Rubio, J. Real and J. Robinson, Pullback attractors for the non-autonomous 2D Navier-Stokes equations for minimally regular forcing,, Discret Cont. Dyn. Syst., 34 (2014), 203.  doi: 10.3934/dcds.2014.34.203.  Google Scholar

[24]

J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors for 2D Navier-Stokes equations with delays and their regularity,, Adv. Nonlinear Stud., 13 (2013), 331.   Google Scholar

[25]

S. M. Guzzo and G. Planas, On a class of three dimensional Navier-Stokes equations with bounded delay,, Discret Cont. Dyn. Syst. Series B, 16 (2011), 225.  doi: 10.3934/dcdsb.2011.16.225.  Google Scholar

[26]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Math. Surveys and Monographs, (1988).   Google Scholar

[27]

X. Han, Exponential attractors for lattice dynamical systems in weighted spaces,, Discrete Contin. Dyn. Syst., 31 (2011), 445.  doi: 10.3934/dcds.2011.31.445.  Google Scholar

[28]

X. Han, Asymptotic behaviors for second order stochastic lattice dynamical systems on $\mathbbZ^k$ in weighted spaces,, J. Math. Anal. Appl., 397 (2013), 242.  doi: 10.1016/j.jmaa.2012.07.015.  Google Scholar

[29]

P. E. Kloeden and M. Rasmussem, Nonautonomous Dynamical Systems,, American Mathematical Society, (2011).  doi: 10.1090/surv/176.  Google Scholar

[30]

P. E. Kloeden, Pullback attractors in nonautonomous difference equations,, J. Difference Eqns. Appl., 6 (2000), 33.  doi: 10.1080/10236190008808212.  Google Scholar

[31]

P. E. Kloeden and D. J. Stonier, Cocycle attractors in nonautonomously perturbed differential equations,, Dynamics Continuous Discrete and Impulsive Systems, 4 (1998), 211.   Google Scholar

[32]

P. E. Kloeden and B. Schmalfuss, Nonautonomous systems, cocycle attractors and variable time-step discretization,, Numer. Algorithms, 14 (1997), 141.  doi: 10.1023/A:1019156812251.  Google Scholar

[33]

V. B. Kolmanovskii and L. E. Shaikhet, General method of Lyapunov functionals construction for stability investigations of stochastic difference equations,, in Dynamical Systems and Applications, 4 (1995), 397.  doi: 10.1142/9789812796417_0026.  Google Scholar

[34]

O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations,, Cambridge, (1991).  doi: 10.1017/CBO9780511569418.  Google Scholar

[35]

J. L. Lions, Quelques Méthodes de Résolutions des Probèmes aux Limites non Linéaires,, Paris; Dunod, (1969).   Google Scholar

[36]

J. Málek and D. Pražák, Large time behavior via the Method of l-trajectories,, J. Diferential Equations, 181 (2002), 243.  doi: 10.1006/jdeq.2001.4087.  Google Scholar

[37]

P. Marín-Rubio, J. Real and J. Valero, Pullback attractors for a two-dimensional Navier-Stokes model in an infinite delay case,, Nonlinear Analysis, 74 (2011), 2012.  doi: 10.1016/j.na.2010.11.008.  Google Scholar

[38]

B. S. Razumikhin, Application of Liapunov's method to problems in the stability of systems with a delay,, Automat. i Telemeh., 21 (1960), 740.   Google Scholar

[39]

B. Schmalfuß, Backward cocycle and attractors of stochastic differential equations,, in International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behaviour (eds. V. Reitmann, (1992), 185.   Google Scholar

[40]

G. Sell, Non-autonomous differential equations and topological dynamics I,, Trans. Amer. Math. Soc., 127 (1967), 241.   Google Scholar

[41]

T. Taniguchi, The exponential behavior of Navier-Stokes equations with time delay external force,, Discrete Contin. Dyn. Syst., 12 (2005), 997.  doi: 10.3934/dcds.2005.12.997.  Google Scholar

[42]

R. Temam, Navier-Stokes equations, Theory and Numerical Analysis,, 2nd. ed., (1979).   Google Scholar

[43]

R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1988).  doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[44]

R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis,, 2nd Ed., (1995).  doi: 10.1137/1.9781611970050.  Google Scholar

[45]

L. Wan and Q. Zhou, Asymptotic behaviors of stochastic two-dimensional Navier-Stokes equations with finite memory,, Journal of Mathematical Physics, 52 (2011).  doi: 10.1063/1.3574630.  Google Scholar

[46]

S. Zhou and X. Han, Uniform exponential attractors for non-autonomous KGS and Zakharov lattice systems with quasiperiodic external forces,, Nonlinear Anal., 78 (2013), 141.  doi: 10.1016/j.na.2012.10.001.  Google Scholar

[1]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[2]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[3]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[4]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[5]

Kengo Nakai, Yoshitaka Saiki. Machine-learning construction of a model for a macroscopic fluid variable using the delay-coordinate of a scalar observable. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1079-1092. doi: 10.3934/dcdss.2020352

[6]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[7]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[8]

John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044

[9]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[10]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[11]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[12]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[13]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[14]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020032

[15]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[16]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[17]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[18]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[19]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[20]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (72)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]