\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Generating pre-fractals to approach real IFS-attractors with a fixed Hausdorff dimension

Abstract / Introduction Related Papers Cited by
  • In this paper, we explain how to generate adequate pre-fractals in order to properly approximate attractors of iterated function systems on the real line within a priori known Hausdorff dimension. To deal with, we have applied the classical Moran's Theorem, so we have been focused on non-overlapping strict self-similar sets. This involves a quite significant hypothesis: the so-called open set condition. The main theoretical result contributed in this paper becomes quite interesting from a computational point of view, since in such a context, there is always a maximum level (of the natural fractal structure we apply in this work) that may be achieved.
    Mathematics Subject Classification: Primary: 28A80; Secondary: 37F35, 54E99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. G. Arenas and M. A. Sánchez-Granero, A characterization of non-archimedeanly quasimetrizable spaces, Rend. Istit. Mat. Univ. Trieste Suppl., 30 (1999), 21-30.

    [2]

    F. G. Arenas and M. A. Sánchez-Granero, A new approach to metrization, Topology Appl., 123 (2002), 15-26.doi: 10.1016/S0166-8641(01)00165-1.

    [3]

    F. G. Arenas and M. A. Sánchez-Granero, A new metrization theorem, Boll. Unione Mat. Ital. (8), 5 (2002), 109-122.

    [4]

    F. G. Arenas and M. A. Sańchez-Granero, A characterization of self-similar symbolic spaces, Mediterr. J. Math., 9 (2012), 709-728.doi: 10.1007/s00009-011-0146-4.

    [5]

    C. Bandt and T. Retta, Topological spaces admitting a unique fractal structure, Fund. Math., 141 (1992), 257-268.

    [6]

    A. S. Besicovitch, Sets of fractional dimensions IV: On rational approximation to real numbers, J. Lond. Math. Soc., 9 (1934), 126-131.doi: 10.1112/jlms/s1-9.2.126.

    [7]

    A. S. Besicovitch and H. D. Ursell, Sets of fractional dimensions V: On dimensional numbers of some continuous curves, J. Lond. Math. Soc., 12 (1937), 18-25.doi: 10.1112/jlms/s1-12.45.18.

    [8]

    C. Brown and L. Liebovitch, Fractal Analysis, in: Series 07-165: Quantitative Applications in the Social Sciences, First ed., SAGE Publications Inc., New York, 2010.

    [9]

    C. Carathéodory, Über das lineare mass von punktmengen-eine verallgemeinerung das längenbegriffs, Nach. Ges. Wiss. Göttingen, (1914), 406-426.

    [10]

    K. Falconer, Fractal Geometry. Mathematical Foundations and Applications, John Wiley & Sons, Chichester, 1990.

    [11]

    J. Feder, Fractals, Plenum Press, New York, 1988.doi: 10.1007/978-1-4899-2124-6.

    [12]

    M. Fernández-Martínez and M. A. Sánchez-Granero, Fractal dimension for fractal structures: A Hausdorff approach, Topology Appl., 159 (2012), 1825-1837.doi: 10.1016/j.topol.2011.04.023.

    [13]

    M. Fernández-Martínez and M. A. Sánchez-Granero, Fractal dimension for fractal structures, Topology Appl., 163 (2014), 93-111.doi: 10.1016/j.topol.2013.10.010.

    [14]

    M. Fernández-Martínez and M. A. Sánchez-Granero, Fractal dimension for fractal structures: A Hausdorff approach revisited, Journal of Mathematical Analysis and Applications, 409 (2014), 321-330.doi: 10.1016/j.jmaa.2013.07.011.

    [15]

    M. Fernández-Martínez, M. A. Sánchez-Granero and J. E. Trinidad Segovia, Fractal dimension for fractal structures: Applications to the domain of words, Appl. Math. Comput., 219 (2012), 1193-1199.doi: 10.1016/j.amc.2012.07.029.

    [16]

    M. Fernández-Martínez, M. A. Sánchez-Granero and J. E. Trinidad Segovia, Fractal Dimensions for Fractal Structures and Their Applications to Financial Markets, Aracne, Roma, 2013.

    [17]

    M. Fernández-Martínez and M. A. Sánchez-Granero, How to calculate the Hausdorff dimension using fractal structures, Appl. Math. Comput., 264 (2015), 116-131.doi: 10.1016/j.amc.2015.04.059.

    [18]

    F. Hausdorff, Dimension und äusseres mass, Math. Ann., 79 (1919), 157-179.

    [19]

    J. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713-747.doi: 10.1512/iumj.1981.30.30055.

    [20]

    B. B. Mandelbrot, Fractals: Form, Chance and Dimension, W.H. Freeman & Company, San Francisco, 1977.

    [21]

    B. B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman & Company, New York, 1982.

    [22]

    P. A. P. Moran, Additive functions of intervals and Hausdorff measure, Proc. Camb. Phil. Soc., 42 (1946), 15-23.doi: 10.1017/S0305004100022684.

    [23]

    K. Morita, Completion of hyperspaces of compact subsets and topological completion of open-closed maps, General Topology Appl., 4 (1974), 217-233.doi: 10.1016/0016-660X(74)90023-3.

    [24]

    L. Pontrjagin and L. Schnirelman, Sur une proprieté métrique de la dimension, Ann. Math., 33 (1932), 156-162.doi: 10.2307/1968109.

    [25]

    M. A. Sánchez-Granero, Fractal structures, in Asymmetric Topology and its Applications, Quaderni di Matematica, 26 Seconda Univ. Napoli, Caserta, 2011, 211-245.

    [26]

    A. Schief, Separation properties for self-similar sets, Proc. Amer. Math. Soc., 122 (1994), 111-115.doi: 10.1090/S0002-9939-1994-1191872-1.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(226) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return